create_indicator | R Documentation |
Computation, significance assessment and display of trends of a custom, user-defined indicator.
create_indicator(fun, taskname = as.character(substitute(fun)))
compute_indicator(mat, fun, taskname = as.character(substitute(fun)), ...)
fun |
A function that takes a matrix as input and returns a vector of numerical values. If the function returns a named vector, then the names will be used in plots and summaries. The function may also accept extra arguments. |
taskname |
The task name. A character string used used for plots and
textual summaries that describes the indicator (or set of indicators)
being computed. If a task name cannot be derived from |
mat |
A matrix or a list of matrices. |
... |
Additional arguments to pass to the function |
spatialwarnings
provides "workflow functions", named *_sews
,
that assist the user in computing, displaying and assessing the
significance of indicator values. The functions create_indicator
and
compute_indicator
provides such workflow for any arbitrary function.
create_indicator
takes a function 'fun' and returns another function
that can be used as an indicator similar to the *_sews
functions. The
results of this function can be assessed for significance using
indictest
and trends can be displayed using
plot
, summary
, etc. (see Examples). compute_indicator
does the same but without needing an intermediate indicator function.
create_indicator
returns a function that can be used in the same way
than the other *_sews
functions (e.g. generic_sews
). This
function as well as compute_indicator
will return
simple_sews_*
objects.
simple_sews
# Use the maximum patch size as indicator of degradation
maxpatchsize <- function(mat) {
max(patchsizes(mat))
}
# Create the indicator function
maxpatch_sews <- create_indicator(maxpatchsize)
# Then work with this function as if it were a function from the *_sews
# family.
mp_indic <- maxpatch_sews(forestgap)
summary(mp_indic)
# Assess significance and display trends
mp_test <- indictest(mp_indic, nulln = 49)
plot(mp_test)
# Try spatial coefficient of variation as a spatial EWS. This function can
# have arguments.
spatial_cv <- function(mat, subsize) {
matc <- coarse_grain(mat, subsize)
return( sd(matc) / mean(matc) )
}
# Create indicator function
cv_sews <- create_indicator(spatial_cv)
# Compute and display trends
cv_indic <- cv_sews(serengeti, subsize = 3)
plot(cv_indic, along = serengeti.rain)
# We can do the same work in one go using compute_indicator
cv_indic2 <- compute_indicator(serengeti, spatial_cv, subsize = 3)
plot(cv_indic2, along = serengeti.rain)
indictest(cv_indic, nulln = 99)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.