methods.zclustermodel | R Documentation |
Methods for the experimental class of cluster models.
## S3 method for class 'zclustermodel'
pcfmodel(model, ...)
## S3 method for class 'zclustermodel'
Kmodel(model, ...)
## S3 method for class 'zclustermodel'
intensity(X, ...)
## S3 method for class 'zclustermodel'
predict(object, ...,
locations, type = "intensity", ngrid = NULL)
## S3 method for class 'zclustermodel'
print(x, ...)
## S3 method for class 'zclustermodel'
clusterradius(model,...,thresh=NULL, precision=FALSE)
## S3 method for class 'zclustermodel'
reach(x, ..., epsilon)
model , object , x , X |
Object of class |
... |
Arguments passed to other methods. |
locations |
Locations where prediction should be performed. A window or a point pattern. |
type |
Currently must equal |
ngrid |
Pixel grid dimensions for prediction, if |
thresh , epsilon |
Tolerance thresholds |
precision |
Logical value stipulating whether the precision should also be returned. |
Experimental.
Same as for other methods.
zclustermodel
m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)
m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7)
m
m2
g <- pcfmodel(m)
g(0.2)
g2 <- pcfmodel(m2)
g2(1)
Z <- predict(m, locations=square(2))
Z2 <- predict(m2, locations=square(1))
varcount(m, square(1))
varcount(m2, square(1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.