View source: R/log_posteriors_and_derivatives_gridded.R
logPosterior_gridded | R Documentation |
A function to evaluate the log-posterior of a spatial parametric proportional hazards model using gridded Y. Not intended for general use.
logPosterior_gridded(
surv,
X,
beta,
omega,
eta,
gamma,
priors,
cov.model,
u,
control,
gradient = FALSE,
hessian = FALSE
)
surv |
an object of class Surv |
X |
the design matrix, containing covariate information |
beta |
parameter beta |
omega |
parameter omega |
eta |
parameter eta |
gamma |
parameter gamma |
priors |
the priors, an object of class 'mcmcPriors' |
cov.model |
the spatial covariance model |
u |
vector of interpoint distances |
control |
a list containg various control parameters for the MCMC and post-processing routines |
gradient |
logical whether to evaluate the gradient |
hessian |
logical whether to evaluate the Hessian |
evaluates the log-posterior and the gradient and hessian, if required.
Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.