simsurv | R Documentation |
A function to simulate spatial parametric proportional hazards model. The function works by simulating candidate survival times using MCMC in parallel for each individual based on each individual's covariates and the common parameter effects, beta.
simsurv(
X = cbind(age = runif(100, 5, 50), sex = rbinom(100, 1, 0.5), cancer = rbinom(100, 1,
0.2)),
beta = c(0.0296, 0.0261, 0.035),
omega = 1,
dist = exponentialHaz(),
coords = matrix(runif(2 * nrow(X)), nrow(X), 2),
cov.parameters = c(1, 0.1),
cov.model = ExponentialCovFct(),
mcmc.control = mcmcpars(nits = 1e+05, burn = 10000, thin = 90),
savechains = TRUE
)
X |
a matrix of covariate information |
beta |
the parameter effects |
omega |
vector of parameters for the baseline hazard model |
dist |
the distribution choice: exp or weibull at present |
coords |
matrix with 2 columns giving the coordinates at which to simulate data |
cov.parameters |
a vector: the parameters for the covariance function |
cov.model |
an object of class covmodel, see ?covmodel |
mcmc.control |
mcmc control paramters, see ?mcmcpars |
savechains |
save all chains? runs faster if set to FALSE, but then you'll be unable to conduct convergence/mixing diagnostics |
in list element 'survtimes', a vector of simulated survival times (the last simulated value from the MCMC chains) in list element 'T' the MCMC chains
covmodel, survspat, tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.