View source: R/xewma.sf.prerun.R
xewma.sf.prerun | R Documentation |
Computation of the survival function of the Run Length (RL) for EWMA control charts monitoring normal mean if the in-control mean, standard deviation, or both are estimated by a pre run.
xewma.sf.prerun(l, c, mu, n, zr=0, hs=0, sided="one", limits="fix", q=1,
size=100, df=NULL, estimated="mu", qm.mu=30, qm.sigma=30,
truncate=1e-10, tail_approx=TRUE, bound=1e-10)
l |
smoothing parameter lambda of the EWMA control chart. |
c |
critical value (similar to alarm limit) of the EWMA control chart. |
mu |
true mean. |
n |
calculate sf up to value |
zr |
reflection border for the one-sided chart. |
hs |
so-called headstart (give fast initial response). |
sided |
distinguish between one- and two-sided EWMA control chart
by choosing |
limits |
distinguish between different control limits behavior. |
q |
change point position. For |
size |
pre run sample size. |
df |
degrees of freedom of the pre run variance estimator. Typically it is simply |
estimated |
name the parameter to be estimated within the |
qm.mu |
number of quadrature nodes for convoluting the mean uncertainty. |
qm.sigma |
number of quadrature nodes for convoluting the standard deviation uncertainty. |
truncate |
size of truncated tail. |
tail_approx |
Controls whether the geometric tail approximation is used (is faster) or not. |
bound |
control when the geometric tail kicks in; the larger the quicker and less accurate; |
The survival function P(L>n) and derived from it also the cdf P(L<=n) and the pmf P(L=n) illustrate the distribution of the EWMA run length...
Returns a vector which resembles the survival function up to a certain point.
Sven Knoth
F. F. Gan (1993), An optimal design of EWMA control charts based on the median run length, J. Stat. Comput. Simulation 45, 169-184.
S. Knoth (2003), EWMA schemes with non-homogeneous transition kernels, Sequential Analysis 22, 241-255.
S. Knoth (2004), Fast initial response features for EWMA Control Charts, Statistical Papers 46, 47-64.
L. A. Jones, C. W. Champ, S. E. Rigdon (2001), The performance of exponentially weighted moving average charts with estimated parameters, Technometrics 43, 156-167.
K.-H. Waldmann (1986), Bounds for the distribution of the run length of geometric moving average charts, Appl. Statist. 35, 151-158.
xewma.sf
for the RL survival function of EWMA control charts
w/o pre run uncertainty.
## Jones/Champ/Rigdon (2001)
c4m <- function(m, n) sqrt(2)*gamma( (m*(n-1)+1)/2 )/sqrt( m*(n-1) )/gamma( m*(n-1)/2 )
n <- 5 # sample size
# Figure 6, subfigure r=0.1
lambda <- 0.1
L <- 2.454
CDF0 <- 1 - xewma.sf(lambda, L, 0, 600, sided="two")
m <- 10 # pre run size
CDF1 <- 1 - xewma.sf.prerun(lambda, L/c4m(m,n), 0, 600, sided="two",
size=m, df=m*(n-1), estimated="both")
m <- 20
CDF2 <- 1 - xewma.sf.prerun(lambda, L/c4m(m,n), 0, 600, sided="two",
size=m, df=m*(n-1), estimated="both")
m <- 50
CDF3 <- 1 - xewma.sf.prerun(lambda, L/c4m(m,n), 0, 600, sided="two",
size=m, df=m*(n-1), estimated="both")
plot(CDF0, type="l", xlab="t", ylab=expression(P(T<=t)), xlim=c(0,500), ylim=c(0,1))
abline(v=0, h=c(0,1), col="grey", lwd=.7)
points((1:5)*100, CDF0[(1:5)*100], pch=18)
lines(CDF1, col="blue")
points((1:5)*100, CDF1[(1:5)*100], pch=2, col="blue")
lines(CDF2, col="red")
points((1:5)*100, CDF2[(1:5)*100], pch=16, col="red")
lines(CDF3, col="green")
points((1:5)*100, CDF3[(1:5)*100], pch=5, col="green")
legend("bottomright", c("Known", "m=10, n=5", "m=20, n=5", "m=50, n=5"),
col=c("black", "blue", "red", "green"), pch=c(18, 2, 16, 5), lty=1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.