spldv: Spatial Models for Limited Dependent Variables

The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators <doi:10.18637/jss.v107.i08>. It supports one-step (Pinkse and Slade, 1998) <doi:10.1016/S0304-4076(97)00097-3> and two-step GMM estimator along with the linearized GMM estimator proposed by Klier and McMillen (2008) <doi:10.1198/073500107000000188>. It also allows for either Probit or Logit model and compute the average marginal effects. All these models are presented in Sarrias and Piras (2023) <doi:10.1016/j.jocm.2023.100432>.

Getting started

Package details

AuthorMauricio Sarrias [aut, cre] (<https://orcid.org/0000-0001-5932-4817>), Gianfranco Piras [aut] (<https://orcid.org/0000-0003-0225-6061>), Daniel McMillen [ctb]
MaintainerMauricio Sarrias <msarrias86@gmail.com>
LicenseGPL (>= 2)
Version0.1.3
URL https://github.com/gpiras/spldv
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("spldv")

Try the spldv package in your browser

Any scripts or data that you put into this service are public.

spldv documentation built on Oct. 11, 2023, 5:14 p.m.