The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators <doi:10.18637/jss.v107.i08>. It supports one-step (Pinkse and Slade, 1998) <doi:10.1016/S0304-4076(97)00097-3> and two-step GMM estimator along with the linearized GMM estimator proposed by Klier and McMillen (2008) <doi:10.1198/073500107000000188>. It also allows for either Probit or Logit model and compute the average marginal effects. All these models are presented in Sarrias and Piras (2023) <doi:10.1016/j.jocm.2023.100432>.
Package details |
|
---|---|
Author | Mauricio Sarrias [aut, cre] (<https://orcid.org/0000-0001-5932-4817>), Gianfranco Piras [aut] (<https://orcid.org/0000-0003-0225-6061>), Daniel McMillen [ctb] |
Maintainer | Mauricio Sarrias <msarrias86@gmail.com> |
License | GPL (>= 2) |
Version | 0.1.3 |
URL | https://github.com/gpiras/spldv |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.