View source: R/marginalEffects.R
| impacts.bingmm | R Documentation |
Obtain the average marginal effects from bingmm or binlgmm class model.
## S3 method for class 'bingmm'
impacts(
object,
vcov = NULL,
vce = c("robust", "efficient", "ml"),
het = TRUE,
atmeans = FALSE,
type = c("mc", "delta"),
R = 100,
approximation = FALSE,
pw = 5,
tol = 1e-06,
empirical = FALSE,
...
)
## S3 method for class 'binlgmm'
impacts(
object,
vcov = NULL,
het = TRUE,
atmeans = FALSE,
type = c("mc", "delta"),
R = 100,
approximation = FALSE,
pw = 5,
tol = 1e-06,
empirical = FALSE,
...
)
## S3 method for class 'impacts.bingmm'
print(x, ...)
## S3 method for class 'impacts.bingmm'
summary(object, ...)
## S3 method for class 'summary.impacts.bingmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
object |
an object of class |
vcov |
an estimate of the asymptotic variance-covariance matrix of the parameters for a |
vce |
string indicating what kind of variance-covariance matrix of the estimate should be computed when using |
het |
logical. If |
atmeans |
logical. If |
type |
string indicating which method is used to compute the standard errors of the average marginal effects. If |
R |
numerical. Indicates the number of draws used in the Monte Carlo approximation if |
approximation |
logical. If |
pw |
numeric. The power used for the approximation |
tol |
Argument passed to |
empirical |
logical. Argument passed to |
... |
further arguments. Ignored. |
x |
an object of class |
digits |
the number of digits. |
Let the model be:
y^*= X\beta + WX\gamma + \lambda W y^* + \epsilon = Z\delta + \lambda Wy^{*} + \epsilon
where y = 1 if y^*>0 and 0 otherwise; \epsilon \sim N(0, 1) if link = "probit" or \epsilon \sim L(0, \pi^2/3) if link = "logit".
The marginal effects respect to variable x_r can be computed as
diag(f(a))D^{-1}_{\lambda}A^{-1}_{\lambda}\left(I_n\beta_r + W\gamma_r\right) = C_r(\theta)
where f() is the pdf, which depends on the assumption of the error terms; diag is the operator that creates a n \times n diagonal matrix; A_{\lambda}= (I -\lambda W); and D_{\lambda} is a diagonal matrix whose elements represent the square root of the diagonal elements of the variance-covariance matrix of u = A_{\lambda}^{-1}\epsilon.
We implement these three summary measures: (1) The average total effects, ATE_r = n^{-1}i_n'C_{r}i_n, (2) The average direct effects, ADE_r = n^{-1}tr(C_{r}), and (3) the average indirect effects, ATE_r - ADE_r.
The standard errors of the average total, direct and indirect effects can be estimated using either Monte Carlo (MC) approximation, which takes into account the sampling distribution of \theta, or Delta Method.
An object of class impacts.bingmm.
Mauricio Sarrias and Gianfranco Piras.
sbinaryGMM, sbinaryLGMM.
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# Two-step (Probit) GMM estimator
ts <- sbinaryGMM(CRIMED ~ INC + HOVAL| HOVAL,
link = "probit",
listw = spdep::nb2listw(COL.nb, style = "W"),
data = COL.OLD,
type = "twostep")
# Marginal effects using Delta Method
summary(impacts(ts, type = "delta"))
# Marginal effects using MC with 100 draws
summary(impacts(ts, type = "mc", R = 100))
# Marginal effects using efficient VC matrix
summary(impacts(ts, type = "delta", vce = "efficient"))
# Marginal effects using efficient VC matrix and ignoring the heteroskedasticity
summary(impacts(ts, type = "delta", vce = "efficient", het = FALSE))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.