sbinaryLGMM | R Documentation |
Estimation of SAR model for binary dependent variables (either Probit or Logit), using Linearized GMM estimator suggested by Klier and McMillen (2008). The model is:
y^*= X\beta + WX\gamma + \lambda W y^* + \epsilon = Z\delta + \lambda Wy^{*} + \epsilon
where y = 1
if y^*>0
and 0 otherwise; \epsilon \sim N(0, 1)
if link = "probit"
or \epsilon \sim L(0, \pi^2/3)
link = "logit"
.
sbinaryLGMM(
formula,
data,
listw = NULL,
nins = 2,
link = c("logit", "probit"),
...
)
## S3 method for class 'binlgmm'
coef(object, ...)
## S3 method for class 'binlgmm'
vcov(object, ...)
## S3 method for class 'binlgmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'binlgmm'
summary(object, ...)
## S3 method for class 'summary.binlgmm'
print(x, digits = max(3, getOption("digits") - 2), ...)
formula |
a symbolic description of the model of the form |
data |
the data of class |
listw |
object. An object of class |
nins |
numerical. Order of instrumental-variable approximation; as default |
link |
string. The assumption of the distribution of the error term; it can be either |
... |
additional arguments. |
x, object, |
an object of class |
digits |
the number of digits |
The steps for the linearized spatial Probit/Logit model are the following:
1. Estimate the model by standard Probit/Logit model, in which spatial autocorrelation and heteroskedasticity are ignored. The estimated values are \beta_0
. Calculate the generalized residuals assuming that \lambda = 0
and the gradient terms G_{\beta}
and G_{\lambda}
.
2. The second step is a two-stage least squares estimator of the linearized model. Thus regress G_{\beta}
and G_{\lambda}
on H = (Z, WZ, W^2Z, ...., W^qZ)
and obtain the predicted values \hat{G}
. Then regress u_0 + G_{\beta}'\hat{\beta}_0
on \hat{G}
. The coefficients are the estimated values of \beta
and \lambda
.
The variance-covariance matrix can be computed using the traditional White-corrected coefficient covariance matrix from the last two-stage least squares estimator of the linearlized model.
An object of class “bingmm
”, a list with elements:
coefficients |
the estimated coefficients, |
call |
the matched call, |
X |
the X matrix, which contains also WX if the second part of the |
H |
the H matrix of instruments used, |
y |
the dependent variable, |
listw |
the spatial weight matrix, |
link |
the string indicating the distribution of the error term, |
fit |
an object of |
formula |
the formula. |
Mauricio Sarrias and Gianfranco Piras.
Klier, T., & McMillen, D. P. (2008). Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples. Journal of Business & Economic Statistics, 26(4), 460-471.
Piras, G., & Sarrias, M. (2023). One or Two-Step? Evaluating GMM Efficiency for Spatial Binary Probit Models. Journal of choice modelling, 48, 100432.
Piras, G,. & Sarrias, M. (2023). GMM Estimators for Binary Spatial Models in R. Journal of Statistical Software, 107(8), 1-33.
sbinaryGMM
, impacts.bingmm
.
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# LGMM for probit using q = 3 for instruments
lgmm <- sbinaryLGMM(CRIMED ~ INC + HOVAL | INC,
link = "probit",
listw = spdep::nb2listw(COL.nb, style = "W"),
nins = 3,
data = COL.OLD)
summary(lgmm)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.