Sparse Group Variable Selection for Gene-Environment Interactions in the Longitudinal Study
Recently, regularized variable selection has emerged as a power tool to identify and dissect gene-environment interactions. Nevertheless, in longitudinal studies with high dimensional genetic factors, regularization methods for G×E interactions have not been systematically developed. In this package, we provide the implementation of sparse group variable selection, based on both the quadratic inference function (QIF) and generalized estimating equation (GEE), to accommodate the bi-level selection for longitudinal G×E studies with high dimensional genomic features. Alternative methods conducting only the group or individual level selection have also been included. The core modules of the package have been developed in C++.
install.packages("devtools")
devtools::install_github("feizhoustat/springer")
#install.packages("devtools")
#devtools::install_github("feizhoustat/springer")
library(springer)
data("dat")
e <- dat$e
u=dim(e)[2]
g <- dat$g
y <- dat$y
clin <- dat$clin
if(is.null(clin)){t=0} else{t=dim(clin)[2]}
beta0 <- dat$coef
lambda1 = seq(0.01,0.1,length.out=2)
lambda2 = seq(0.01,0.1,length.out=2)
tunning = cv.springer(clin=NULL, e, g, y,beta0, lambda1, lambda2, nfolds=5, func="GEE", corr="independence", structure="bilevel", maxits=30, tol=0.1)
lam1 <- tunning$lam1
lam2 <- tunning$lam2
lam1
lam2
tunning$CV
beta = springer(clin=clin, e, g, y,beta0,func="GEE",corr="independence",structure="bilevel",
lam1=dat$lam1, lam2=dat$lam2,maxits=30,tol=0.01)
##only focus on the genetic main effects and gene-environment interactions
beta[1:(1+t+u)]=0
##effects that have nonzero coefficients
pos = which(beta != 0)
##true positive and false positive
tp = length(intersect(index, pos))
fp = length(pos) - tp
list(tp=tp, fp=fp)
This package provides implementation for methods proposed in
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.