sprm: Sparse and Non-Sparse Partial Robust M Regression and Classification

Robust dimension reduction methods for regression and discriminant analysis are implemented that yield estimates with a partial least squares alike interpretability. Partial robust M regression (PRM) is robust to both vertical outliers and leverage points. Sparse partial robust M regression (SPRM) is a related robust method with sparse coefficient estimate, and therefore with intrinsic variable selection. For binary classification related discriminant methods are PRM-DA and SPRM-DA.

Package details

AuthorSven Serneels (BASF Corp) and Irene Hoffmann
MaintainerIrene Hoffmann <irene.hoffmann@tuwien.ac.at>
LicenseGPL (>= 3)
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the sprm package in your browser

Any scripts or data that you put into this service are public.

sprm documentation built on May 2, 2019, 9:57 a.m.