Nothing
#' Optimization of sample configurations using a user-defined objective function
#'
#' Optimize a sample configuration using a user-defined objective function.
#'
# @inheritParams spJitter
#' @template spSANN_doc
#'
#' @param fun A function defining the objective function that should be used to evaluate the energy state of
#' the system configuration at each random perturbation of a candidate sample point. See \sQuote{Details} for
#' more information.
#'
#' @param ... Other arguments passed to the objective function. See \sQuote{Details} for more information.
#'
#' @details
#' The user-defined objective function \code{fun} must be an object of class \code{\link[base]{function}} and
#' include the argument \code{points}. The argument \code{points} is defined in \code{optimUSER} as a matrix
#' with three columns: \code{[, 1]} the identification of each sample point given by the respective row
#' indexes of \code{candi}, \code{[, 2]} the x-coordinates, and \code{[, 3]} the y-coordinates. The
#' identification is useful to retrieve information from any data matrix used by the objective function
#' defined by the user.
#'
#' @return
#' \code{optimUSER} returns an object of class \code{OptimizedSampleConfiguration}: the optimized sample
#' configuration with details about the optimization.
#'
#' @author
#' Alessandro Samuel-Rosa \email{alessandrosamuelrosa@@gmail.com}
#' @aliases optimUSER USER
#' @export
#' @examples
#' \dontrun{
#' # This example takes more than 5 seconds
#' require(sp)
#' require(SpatialTools)
#' data(meuse.grid)
#' candi <- meuse.grid[, 1:2]
#' schedule <- scheduleSPSANN(chains = 1, initial.temperature = 30,
#' x.max = 1540, y.max = 2060, x.min = 0,
#' y.min = 0, cellsize = 40)
#'
#' # Define the objective function - number of points per lag distance class
#' objUSER <-
#' function (points, lags, n_lags, n_pts) {
#' dm <- SpatialTools::dist1(points[, 2:3])
#' ppl <- vector()
#' for (i in 1:n_lags) {
#' n <- which(dm > lags[i] & dm <= lags[i + 1], arr.ind = TRUE)
#' ppl[i] <- length(unique(c(n)))
#' }
#' distri <- rep(n_pts, n_lags)
#' res <- sum(distri - ppl)
#' }
#' lags <- seq(1, 1000, length.out = 10)
#'
#' # Run the optimization using the user-defined objective function
#' set.seed(2001)
#' timeUSER <- Sys.time()
#' resUSER <- optimUSER(points = 10, fun = objUSER, lags = lags, n_lags = 9,
#' n_pts = 10, candi = candi, schedule = schedule)
#' timeUSER <- Sys.time() - timeUSER
#'
#' # Run the optimization using the respective function implemented in spsann
#' set.seed(2001)
#' timePPL <- Sys.time()
#' resPPL <- optimPPL(points = 10, candi = candi, lags = lags,
#' schedule = schedule)
#' timePPL <- Sys.time() - timePPL
#'
#' # Compare results
#' timeUSER
#' timePPL
#' lapply(list(resUSER, resPPL), countPPL, candi = candi, lags = lags)
#' objSPSANN(resUSER) - objSPSANN(resPPL)
#' }
# FUNCTION - MAIN ##############################################################
optimUSER <-
function (points, candi,
# USER
fun, ...,
# SPSANN
schedule = scheduleSPSANN(), plotit = FALSE, track = FALSE,
boundary, progress = "txt", verbose = FALSE) {
# Objective function name
objective <- "USER"
# Check spsann arguments
eval(.check_spsann_arguments())
# Set plotting options
eval(.plotting_options())
# Prepare points and candi
eval(.prepare_points())
# Prepare for jittering
eval(.prepare_jittering())
# Initial energy state
energy0 <- data.frame(obj = .energyUSER(fun = fun, points = old_conf, ...))
# Other settings for the simulated annealing algorithm
old_energy <- energy0
best_energy <- data.frame(obj = Inf)
actual_temp <- schedule$initial.temperature
k <- 0 # count the number of jitters
# Set progress bar
eval(.set_progress())
# Initiate the annealing schedule
for (i in 1:schedule$chains) {
n_accept <- 0
for (j in 1:schedule$chain.length) { # Initiate one chain
for (wp in 1:n_pts) { # Initiate loop through points
k <- k + 1
# Plotting and jittering
eval(.plot_and_jitter())
# New energy state
new_energy <- data.frame(
obj = .energyUSER(fun = fun, points = new_conf, ...))
# Evaluate the new system configuration
accept <- .acceptSPSANN(old_energy[[1]], new_energy[[1]], actual_temp)
if (accept) {
old_conf <- new_conf
old_energy <- new_energy
n_accept <- n_accept + 1
} else {
new_energy <- old_energy
new_conf <- old_conf
}
if (track) energies[k, ] <- new_energy
# Record best energy state
if (new_energy[[1]] < best_energy[[1]] / 1.0000001) {
best_k <- k
best_conf <- new_conf
best_energy <- new_energy
best_old_energy <- old_energy
old_conf <- old_conf
}
# Update progress bar
eval(.update_progress())
} # End loop through points
} # End the chain
# Check the proportion of accepted jitters in the first chain
eval(.check_first_chain())
# Count the number of chains without any change in the objective function.
# Restart with the previously best configuration if it exists.
if (n_accept == 0) {
no_change <- no_change + 1
if (no_change > schedule$stopping) {
# if (new_energy[[1]] > best_energy[[1]] * 1.000001) {
# old_conf <- old_conf
# new_conf <- best_conf
# old_energy <- best_old_energy
# new_energy <- best_energy
# no_change <- 0
# cat("\nrestarting with previously best configuration\n")
# } else {
break
# }
}
if (verbose) {
cat("\n", no_change, "chain(s) with no improvement... stops at",
schedule$stopping, "\n")
}
} else {
no_change <- 0
}
# Update control parameters
actual_temp <- actual_temp * schedule$temperature.decrease
x.max <- x_max0 - (i / schedule$chains) * (x_max0 - x.min) + cellsize[1]
y.max <- y_max0 - (i / schedule$chains) * (y_max0 - y.min) + cellsize[2]
} # End the annealing schedule
# Prepare output
eval(.prepare_output())
}
# INTERNAL FUNCTION - CALCULATE DE ENERGY STATE ################################
# fun: objective function definition
# points: system configuration
.energyUSER <-
function (fun, points, ...) {
if (missing(fun) || missing(points)) {
stop ("'fun' and 'points' are mandatory arguments")
}
return (do.call(fun, list(points, ...)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.