R/spsurv-package.R

#' The 'spsurv' package.
#'
#' @description A set of flexible routines to allow semiparametric
#' survival regression modeling based on Bernstein polynomial, including Bernstein based proportinal hazards model (BPPH), Bernstein polynomial based proportional odds model (BPPO) and
#' Bernstein based accelerated failure time model (BPAFT) for right-censored data.
#'
#' @details \code{\link[spsurv]{spbp}} fits semi-parametric models for time-to-event survival data.
#' Non-informative right-censoring assumption is available. Any user-defined Bernstein polynomial can
#' be user-defined using an arbitrary degree, i.e. highest basis polynomials order.
#'
#' The framework takes advantage of fully likelihood methods since the polynomial parameters are used
#' to estimate the baseline functions. Even so, this is said to be semi-parametric since this approach
#' does not rely on any distribution. Unlike the Cox model, the BP based models provide smooth hazard and survival curve estimates.
#'
#'
#' @docType package
#' @name spsurv-package
#' @aliases spsurv
#' @useDynLib spsurv, .registration = TRUE
#' @import methods
#' @import Rcpp
#' @import survival
#' @importFrom rstan stan sampling optimizing
#' @author Renato Valladares Panaro (renatovp@ime.usp.br).
#' @references
#'
#' Panaro R.V. (2020). spsurv: An R package for semi-parametric survival analysis. arXiv preprint arXiv:2003.10548.
#'
#' Demarqui, F. N., & Mayrink, V. D. (2019). A fully likelihood-based approach to model survival data with crossing survival curves. arXiv preprint arXiv:1910.02406.
#'
#' Demarqui, F. N., Mayrink, V. D., & Ghosh, S. K. (2019). An Unified Semiparametric Approach to Model Lifetime Data with Crossing Survival Curves. arXiv preprint arXiv:1910.04475.
#'
#' Osman, M., & Ghosh, S. K. (2012). Nonparametric regression models for right-censored data using Bernstein polynomials. Computational Statistics & Data Analysis, 56(3), 559-573.
#'
#' Lorentz, G. G. (1953). Bernstein polynomials. American Mathematical Society.
#' @return none
#'
NULL

## quiets concerns of R CMD check re: the .'s that appear in pipelines
if(getRversion() >= "2.15.1")  utils::globalVariables(c("Call", "Terms", "X", "Y",
                                                         "approach", "approach_flag",
                                                         "aux", "cores", "data.n", "degree",
                                                         "features", "frailty_idx",
                                                         "mf", "model_flag", "null",
                                                         "priorpars", "priors",
                                                         "stanArgs", "status", "std",
                                                         "tau", "temp", "type",
                                                         "xlevels"))

Try the spsurv package in your browser

Any scripts or data that you put into this service are public.

spsurv documentation built on April 14, 2020, 7:20 p.m.