Nothing
#Server functions for the full model
SVRcreateRcode <- function(input, myLabels) {
output <- paste0("
##############################################################
########## R code to run a simulation with squidR() ##########
##############################################################
library(squid)
input <- list()
input$Tmax <- ",input[[myLabels$Tmax]]," # Time steps
input$NP <- ",input[[myLabels$NP]]," # Number of replicates
input$NI <- ",input[[myLabels$NI]]," # Number of individuals
input$NT <- ",input[[myLabels$NT]]," # Number of traits
input$NG <- ",input[[myLabels$NG]]," # Number of higher-level groups
#### Environment X1 ####
input$X1_state <- ",input[[myLabels$X1_state]],"
# Stochastic environmental effect
input$X1_sto_state <- ",input[[myLabels$X1_sto_state]],"
input$X1_sto_shared <- ",input[[myLabels$X1_sto_shared]]," # Stochastic environmental effect shared between individuals
input$X1_sto_V <- ",input[[myLabels$X1_sto_V]]," # Environmental effect variance
input$X1_sto_autocor_state <- ",input[[myLabels$X1_sto_autocor_state]]," # Add autocorrelation to the stochastic environmental effect
input$X1_sto_corr <- ",input[[myLabels$X1_sto_corr]]," # Correlation value between two consecutive time steps
# Linear environmental effect
input$X1_lin_state <- ",input[[myLabels$X1_lin_state]],"
input$X1_lin_shared <- ",input[[myLabels$X1_lin_shared]]," # Linear environmental effect shared between individuals
input$X1_lin_intercept <- ",input[[myLabels$X1_lin_intercept]]," # Linear intercept value
input$X1_lin_slope <- ",input[[myLabels$X1_lin_slope]]," # Linear slope value
input$X1_lin_V <- ",input[[myLabels$X1_lin_V]]," # Variance around mean environmental parameters
# Cyclic environmental effect
input$X1_cyc_state <- ",input[[myLabels$X1_cyc_state]],"
input$X1_cyc_shared <- ",input[[myLabels$X1_cyc_shared]]," # Cyclic environmental effect shared between individuals
input$X1_cyc_amplitude <- ",input[[myLabels$X1_cyc_amplitude]]," # Amplitude value
input$X1_cyc_period <- ",input[[myLabels$X1_cyc_period]]," # Period value
input$X1_cyc_Hshift <- ",input[[myLabels$X1_cyc_Hshift]]," # Horizontal shift
input$X1_cyc_Vshift <- ",input[[myLabels$X1_cyc_Vshift]]," # Vertical shift
input$X1_cyc_V <- ",input[[myLabels$X1_cyc_V]]," # Variance around mean environmental parameters
#### Environment X2 ####
input$X2_state <- ",input[[myLabels$X2_state]],"
# Stochastic environmental effect
input$X2_sto_state <- ",input[[myLabels$X2_sto_state]],"
input$X2_sto_shared <- ",input[[myLabels$X2_sto_shared]]," # Stochastic environmental effect shared between individuals
input$X2_sto_V <- ",input[[myLabels$X2_sto_V]]," # Environmental effect variance
input$X2_sto_autocor_state <- ",input[[myLabels$X2_sto_autocor_state]]," # Add autocorrelation to the stochastic environmental effect
input$X2_sto_corr <- ",input[[myLabels$X2_sto_corr]]," # Correlation value between two consecutive time steps
# Linear environmental effect
input$X2_lin_state <- ",input[[myLabels$X2_lin_state]],"
input$X2_lin_shared <- ",input[[myLabels$X2_lin_shared]]," # Linear environmental effect shared between individuals
input$X2_lin_intercept <- ",input[[myLabels$X2_lin_intercept]]," # Linear intercept value
input$X2_lin_slope <- ",input[[myLabels$X2_lin_slope]]," # Linear slope value
input$X2_lin_V <- ",input[[myLabels$X2_lin_V]]," # Variance around mean environmental parameters
# Cyclic environmental effect
input$X2_cyc_state <- ",input[[myLabels$X2_cyc_state]],"
input$X2_cyc_shared <- ",input[[myLabels$X2_cyc_shared]]," # Cyclic environmental effect shared between individuals
input$X2_cyc_amplitude <- ",input[[myLabels$X2_cyc_amplitude]]," # Amplitude value
input$X2_cyc_period <- ",input[[myLabels$X2_cyc_period]]," # Period value
input$X2_cyc_Hshift <- ",input[[myLabels$X2_cyc_Hshift]]," # Horizontal shift
input$X2_cyc_Vshift <- ",input[[myLabels$X2_cyc_Vshift]]," # Vertical shift
input$X2_cyc_V <- ",input[[myLabels$X2_cyc_V]]," # Variance around mean environmental parameters
# Interaction between environment X1 and X2.
input$X_Interaction <- ",input[[myLabels$X_Interaction]],"
# Population mean values
input$B <- matrix(c(",paste(input[[myLabels$B]], collapse = ", "),"), 1, byrow = TRUE)
# Individual variance/correlation matrix
input$Vind <- matrix(c(",paste(input[[myLabels$Vind]], collapse = ", "),"), ",ncol(input[[myLabels$Vind]]),", byrow = FALSE)
# Residual variance
input$Ve <- matrix(c(",paste(input[[myLabels$Ve]], collapse = ", "),"), ",ifelse(is.null(ncol(input[[myLabels$Ve]])), 1, ncol(input[[myLabels$Ve]])),", byrow = FALSE)
# Higher-level grouping variance
input$VG <- matrix(c(",paste(input[[myLabels$VG]], collapse = ", "),"), ",ifelse(is.null(ncol(input[[myLabels$VG]])), 1, ncol(input[[myLabels$VG]])),", byrow = FALSE)
input$NR <- ",input[[myLabels$NR]]," # Mean number of records per individual
input$Vhsi <- ",input[[myLabels$Vhsi]]," # Among-individual variance in timing of sampling
input$NR_ind <- ",input[[myLabels$NR_ind]]," # if TRUE, individuals will be sampled the same number of times
input$NR_trait <- ",input[[myLabels$NR_trait]]," # if TRUE, traits within individuals will be sampled the same number of times
input$ST_ind <- ",input[[myLabels$ST_ind]]," # if TRUE, individuals will be sampled at the same time (i.e. recorded simultaneously).
input$ST_trait <- ",input[[myLabels$ST_trait]]," # if TRUE, traits within individuals will be sampled at the same times (i.e. recorded simultaneously).
# Run simulation
data <- squidR(input)
# Extract sampled data for analysis
sampled_data <- data$sampled_data
")
return(output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.