Nothing
# ----------------------
# Add Optimal Predictor
# ----------------------
add_optimal_predictor <- function(lars_model,
model_saturation, model_size, n){
# Add optimal predictor
lars_model[["model_predictors"]] <-
c(lars_model[["model_predictors"]], lars_model[["optimal_predictor"]])
# Remove optimal predictor from candidates
position_optimal <- c(which(lars_model[["candidate_predictors"]] == lars_model[["optimal_predictor"]]))
lars_model[["candidate_predictors"]] <-
lars_model[["candidate_predictors"]][-position_optimal]
# Update s_vec
lars_model[["s_vec"]] <-
c(lars_model[["s_vec"]],
ifelse(lars_model[["gamma_vec_p"]][position_optimal] <
lars_model[["gamma_vec_m"]][position_optimal], 1, -1))
# Update r
lars_model[["r"]] <-
lars_model[["r"]] - lars_model[["gamma"]] * lars_model[["a"]]
# Update r_vec
lars_model[["r_vec"]] <-
lars_model[["r_vec"]][-position_optimal] - lars_model[["gamma"]] * lars_model[["a_vec"]][-position_optimal]
# Check if model saturation is achieved
if(length(lars_model[["model_predictors"]]) == (n - 1))
lars_model[["saturated"]] <- TRUE else if(model_saturation == "fixed" && length(lars_model[["model_predictors"]]) == (n - 1))
lars_model[["saturated"]] <- TRUE
# Update current MM model
lars_model[["rss_current"]] <-lars_model[["rss_candidate"]]
return(lars_model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.