View source: R/survey_statistics.r
survey_ratio | R Documentation |
Calculate ratios from complex survey data. A wrapper
around svyratio
. survey_ratio
should always be called from summarise
.
survey_ratio(
numerator,
denominator,
na.rm = FALSE,
vartype = c("se", "ci", "var", "cv"),
level = 0.95,
deff = FALSE,
df = NULL,
...
)
numerator |
The numerator of the ratio |
denominator |
The denominator of the ratio |
na.rm |
A logical value to indicate whether missing values should be dropped |
vartype |
Report variability as one or more of: standard error ("se", default), confidence interval ("ci"), variance ("var") or coefficient of variation ("cv"). |
level |
A single number or vector of numbers indicating the confidence level |
deff |
A logical value to indicate whether the design effect should be returned. |
df |
(For vartype = "ci" only) A numeric value indicating the degrees of freedom
for t-distribution. The default (NULL) uses |
... |
Ignored |
library(survey)
data(api)
dstrata <- apistrat %>%
as_survey_design(strata = stype, weights = pw)
dstrata %>%
summarise(enroll = survey_ratio(api00, api99, vartype = c("ci", "cv")))
dstrata %>%
group_by(awards) %>%
summarise(api00 = survey_ratio(api00, api99))
# level takes a vector for multiple levels of confidence intervals
dstrata %>%
summarise(enroll = survey_ratio(api99, api00, vartype = "ci", level = c(0.95, 0.65)))
# Note that the default degrees of freedom in srvyr is different from
# survey, so your confidence intervals might not exactly match. To
# replicate survey's behavior, use df = Inf
dstrata %>%
summarise(srvyr_default = survey_total(api99, vartype = "ci"),
survey_defualt = survey_total(api99, vartype = "ci", df = Inf))
comparison <- survey::svytotal(~api99, dstrata)
confint(comparison) # survey's default
confint(comparison, df = survey::degf(dstrata)) # srvyr's default
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.