ssd_rburrIII3 | R Documentation |
Random Number Generation
ssd_rburrIII3(n, shape1 = 1, shape2 = 1, scale = 1, chk = TRUE)
ssd_rgamma(n, shape = 1, scale = 1, chk = TRUE)
ssd_rgompertz(n, location = 1, shape = 1, chk = TRUE)
ssd_rinvpareto(n, shape = 3, scale = 1, chk = TRUE)
ssd_rlgumbel(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rllogis_llogis(
n,
locationlog1 = 0,
scalelog1 = 1,
locationlog2 = 1,
scalelog2 = 1,
pmix = 0.5,
chk = TRUE
)
ssd_rllogis(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rlnorm_lnorm(
n,
meanlog1 = 0,
sdlog1 = 1,
meanlog2 = 1,
sdlog2 = 1,
pmix = 0.5,
chk = TRUE
)
ssd_rlnorm(n, meanlog = 0, sdlog = 1, chk = TRUE)
ssd_rmulti(
n,
burrIII3.weight = 0,
burrIII3.shape1 = 1,
burrIII3.shape2 = 1,
burrIII3.scale = 1,
gamma.weight = 0,
gamma.shape = 1,
gamma.scale = 1,
gompertz.weight = 0,
gompertz.location = 1,
gompertz.shape = 1,
lgumbel.weight = 0,
lgumbel.locationlog = 0,
lgumbel.scalelog = 1,
llogis.weight = 0,
llogis.locationlog = 0,
llogis.scalelog = 1,
llogis_llogis.weight = 0,
llogis_llogis.locationlog1 = 0,
llogis_llogis.scalelog1 = 1,
llogis_llogis.locationlog2 = 1,
llogis_llogis.scalelog2 = 1,
llogis_llogis.pmix = 0.5,
lnorm.weight = 0,
lnorm.meanlog = 0,
lnorm.sdlog = 1,
lnorm_lnorm.weight = 0,
lnorm_lnorm.meanlog1 = 0,
lnorm_lnorm.sdlog1 = 1,
lnorm_lnorm.meanlog2 = 1,
lnorm_lnorm.sdlog2 = 1,
lnorm_lnorm.pmix = 0.5,
weibull.weight = 0,
weibull.shape = 1,
weibull.scale = 1,
chk = TRUE
)
ssd_rmulti_fitdists(n, fitdists, chk = TRUE)
ssd_rweibull(n, shape = 1, scale = 1, chk = TRUE)
n |
positive number of observations. |
shape1 |
shape1 parameter. |
shape2 |
shape2 parameter. |
scale |
scale parameter. |
chk |
A flag specifying whether to check the arguments. |
shape |
shape parameter. |
location |
location parameter. |
locationlog |
location on the log scale parameter. |
scalelog |
scale on log scale parameter. |
locationlog1 |
locationlog1 parameter. |
scalelog1 |
scalelog1 parameter. |
locationlog2 |
locationlog2 parameter. |
scalelog2 |
scalelog2 parameter. |
pmix |
Proportion mixture parameter. |
meanlog1 |
mean on log scale parameter. |
sdlog1 |
standard deviation on log scale parameter. |
meanlog2 |
mean on log scale parameter. |
sdlog2 |
standard deviation on log scale parameter. |
meanlog |
mean on log scale parameter. |
sdlog |
standard deviation on log scale parameter. |
burrIII3.weight |
weight parameter for the Burr III distribution. |
burrIII3.shape1 |
shape1 parameter for the Burr III distribution. |
burrIII3.shape2 |
shape2 parameter for the Burr III distribution. |
burrIII3.scale |
scale parameter for the Burr III distribution. |
gamma.weight |
weight parameter for the gamma distribution. |
gamma.shape |
shape parameter for the gamma distribution. |
gamma.scale |
scale parameter for the gamma distribution. |
gompertz.weight |
weight parameter for the Gompertz distribution. |
gompertz.location |
location parameter for the Gompertz distribution. |
gompertz.shape |
shape parameter for the Gompertz distribution. |
lgumbel.weight |
weight parameter for the log-Gumbel distribution. |
lgumbel.locationlog |
location parameter for the log-Gumbel distribution. |
lgumbel.scalelog |
scale parameter for the log-Gumbel distribution. |
llogis.weight |
weight parameter for the log-logistic distribution. |
llogis.locationlog |
location parameter for the log-logistic distribution. |
llogis.scalelog |
scale parameter for the log-logistic distribution. |
llogis_llogis.weight |
weight parameter for the log-logistic log-logistic mixture distribution. |
llogis_llogis.locationlog1 |
locationlog1 parameter for the log-logistic log-logistic mixture distribution. |
llogis_llogis.scalelog1 |
scalelog1 parameter for the log-logistic log-logistic mixture distribution. |
llogis_llogis.locationlog2 |
locationlog2 parameter for the log-logistic log-logistic mixture distribution. |
llogis_llogis.scalelog2 |
scalelog2 parameter for the log-logistic log-logistic mixture distribution. |
llogis_llogis.pmix |
pmix parameter for the log-logistic log-logistic mixture distribution. |
lnorm.weight |
weight parameter for the log-normal distribution. |
lnorm.meanlog |
meanlog parameter for the log-normal distribution. |
lnorm.sdlog |
sdlog parameter for the log-normal distribution. |
lnorm_lnorm.weight |
weight parameter for the log-normal log-normal mixture distribution. |
lnorm_lnorm.meanlog1 |
meanlog1 parameter for the log-normal log-normal mixture distribution. |
lnorm_lnorm.sdlog1 |
sdlog1 parameter for the log-normal log-normal mixture distribution. |
lnorm_lnorm.meanlog2 |
meanlog2 parameter for the log-normal log-normal mixture distribution. |
lnorm_lnorm.sdlog2 |
sdlog2 parameter for the log-normal log-normal mixture distribution. |
lnorm_lnorm.pmix |
pmix parameter for the log-normal log-normal mixture distribution. |
weibull.weight |
weight parameter for the Weibull distribution. |
weibull.shape |
shape parameter for the Weibull distribution. |
weibull.scale |
scale parameter for the Weibull distribution. |
fitdists |
An object of class fitdists. |
ssd_rburrIII3()
: Random Generation for BurrIII Distribution
ssd_rgamma()
: Random Generation for Gamma Distribution
ssd_rgompertz()
: Random Generation for Gompertz Distribution
ssd_rinvpareto()
: Random Generation for Inverse Pareto Distribution
ssd_rlgumbel()
: Random Generation for log-Gumbel Distribution
ssd_rllogis_llogis()
: Random Generation for Log-Logistic/Log-Logistic Mixture Distribution
ssd_rllogis()
: Random Generation for Log-Logistic Distribution
ssd_rlnorm_lnorm()
: Random Generation for Log-Normal/Log-Normal Mixture Distribution
ssd_rlnorm()
: Random Generation for Log-Normal Distribution
ssd_rmulti()
: Random Generation for Multiple Distributions
ssd_rmulti_fitdists()
: Random Generation for Multiple Distributions
ssd_rweibull()
: Random Generation for Weibull Distribution
ssd_p
and ssd_q
set.seed(50)
hist(ssd_rburrIII3(10000), breaks = 1000)
set.seed(50)
hist(ssd_rgamma(10000), breaks = 1000)
set.seed(50)
hist(ssd_rgompertz(10000), breaks = 1000)
set.seed(50)
hist(ssd_rinvpareto(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlgumbel(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis_llogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm_lnorm(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm(10000), breaks = 1000)
# multi
set.seed(50)
hist(ssd_rmulti(1000, gamma.weight = 0.5, lnorm.weight = 0.5), breaks = 100)
# multi fitdists
fit <- ssd_fit_dists(ssddata::ccme_boron)
ssd_rmulti_fitdists(2, fit)
set.seed(50)
hist(ssd_rweibull(10000), breaks = 1000)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.