Nothing
# Copyright 2015-2023 Province of British Columbia
# Copyright 2021 Environment and Climate Change Canada
# Copyright 2023-2024 Australian Government Department of Climate Change,
# Energy, the Environment and Water
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' Parameter Descriptions for ssdtools Functions
#' @param add_x The value to add to the label x values (before multiplying by `shift_x`).
#' @param all A flag specifying whether to also return transformed parameters.
#' @param all_dists A flag specifying whether all the named distributions must fit successfully.
#' @param at_boundary_ok A flag specifying whether a model with one or more
#' parameters at the boundary should be considered to have converged (default = FALSE).
#' @param average A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
#' @param bcanz A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
#' @param big.mark A string specifying used between every 3 digits to separate thousands on the x-axis.
#' @param breaks A character vector
#' @param bounds A named non-negative numeric vector of the left and right bounds for
#' uncensored missing (0 and Inf) data in terms of the orders of magnitude
#' relative to the extremes for non-missing values.
#' @param chk A flag specifying whether to check the arguments.
#' @param ci A flag specifying whether to estimate confidence intervals (by bootstrapping).
#' @param censoring A numeric vector of the left and right censoring values.
#' @param color A string of the column in data for the color aesthetic.
#' @param computable A flag specifying whether to only return fits with numerically computable standard errors.
#' @param conc A numeric vector of concentrations to calculate the hazard proportions for.
#' @param control A list of control parameters passed to [`stats::optim()`].
#' @param data A data frame.
#' @param delta A non-negative number specifying the maximum absolute AIC difference cutoff.
#' Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
#' @param digits A whole number specifying the number of significant figures.
#' @param dists A character vector of the distribution names.
#' @param fitdists An object of class fitdists.
#' @param hc A value between 0 and 1 indicating the proportion hazard concentration (or NULL).
#' @param hc_value A number of the hazard concentration value to offset.
#' @param label A string of the column in data with the labels.
#' @param label_size A number for the size of the labels.
#' @param left A string of the column in data with the concentrations.
#' @param level A number between 0 and 1 of the confidence level of the interval.
#' @param linecolor A string of the column in pred to use for the line color.
#' @param linetype A string of the column in pred to use for the linetype.
#' @param llocation location parameter on the log scale.
#' @param location location parameter.
#' @param locationlog location on the log scale parameter.
#' @param locationlog1 locationlog1 parameter.
#' @param locationlog2 locationlog2 parameter.
#' @param log logical; if TRUE, probabilities p are given as log(p).
#' @param log.p logical; if TRUE, probabilities p are given as log(p).
#' @param lscale scale parameter on the log scale.
#' @param lshape shape parameter on the log scale.
#' @param lshape1 shape1 parameter on the log scale.
#' @param lshape2 shape2 parameter on the log scale.
#' @param lower.tail logical; if TRUE (default), probabilities are `P[X <= x]`, otherwise, `P[X > x]`.
#' @param meanlog mean on log scale parameter.
#' @param meanlog1 mean on log scale parameter.
#' @param meanlog2 mean on log scale parameter.
#' @param min_pboot A number between 0 and 1 of the minimum
#' proportion of bootstrap samples that must successfully fit (return a likelihood)
#' to report the confidence intervals.
#' @param min_pmix A number between 0 and 0.5 specifying the minimum proportion in mixture models.
#' @param n A whole number of the effective number of rows of data.
#' @param npars A whole numeric vector specifying which distributions to include based on the number of parameters.
#' @param all_estimates A flag specifying whether to calculate estimates for all implemented distributions.
#' @param ci_method A string specifying which method to use for estimating the bootstrap values.
#' Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the weighted arithmetic means of the lower and upper confidence limits.
#' @param multi_est A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged estimates.
#' @param na.rm A flag specifying whether to silently remove missing values or
#' remove them with a warning.
#' @param n positive number of observations.
#' @param nboot A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
#' @param nrow A positive whole number of the minimum number of non-missing rows.
#' @param nsim A positive whole number of the number of simulations to generate.
#' @param object The object.
#' @param parametric A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
#' @param p vector of probabilities.
#' @param percent A numeric vector of percent values to estimate hazard concentrations for. Deprecated for `proportion = 0.05`. `r lifecycle::badge("deprecated")`
#' @param pmix Proportion mixture parameter.
#' @param proportion A numeric vector of proportion values to estimate hazard concentrations for.
#' @param pvalue A flag specifying whether to return p-values or the statistics (default) for the various tests.
#' @param pred A data frame of the predictions.
#' @param q vector of quantiles.
#' @param range_shape1 A numeric vector of length two of the lower and upper bounds for the shape1 parameter.
#' @param range_shape2 A numeric vector of length two of the lower and upper bounds for the shape2 parameter.
#' @param range_shape2 shape2 parameter.
#' @param reweight A flag specifying whether to reweight weights by dividing by the largest weight.
#' @param rescale A flag specifying whether to rescale concentration values by dividing by the geometric mean of the minimum and maximum positive finite values.
#' @param ribbon A flag indicating whether to plot the confidence interval as a grey ribbon as opposed to green solid lines.
#' @param right A string of the column in data with the right concentration values.
#' @param save_to NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
#' @param samples A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
#' @param scale scale parameter.
#' @param scalelog1 scalelog1 parameter.
#' @param scalelog2 scalelog2 parameter.
#' @param scalelog scale on log scale parameter.
#' @param sdlog standard deviation on log scale parameter.
#' @param sdlog1 standard deviation on log scale parameter.
#' @param sdlog2 standard deviation on log scale parameter.
#' @param select A character vector of the distributions to select.
#' @param shape shape parameter.
#' @param shape1 shape1 parameter.
#' @param shape2 shape2 parameter.
#' @param shift_x The value to multiply the label x values by (after adding `add_x`).
#' @param silent A flag indicating whether fits should fail silently.
#' @param size A number for the size of the labels. Deprecated for `label_size`. #' `r lifecycle::badge("deprecated")`
#' @param suffix Additional text to display after the number on the y-axis.
#' @param tails A flag or NULL specifying whether to only include distributions with both tails.
#' @param text_size A number for the text size.
#' @param theme_classic A flag specifying whether to use the classic theme or the default.
#' @param trans A string of which transformation to use. Accepted values include `"log10"`, `"log"`, and `"identity"` (`"log10"` by default).
#' @param valid A flag or NULL specifying whether to include distributions with valid likelihoods that allows them to be fit with other distributions for modeling averaging.
#' @param weight A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.
#' @param x The object.
#' @param xbreaks The x-axis breaks as one of:
#' - `NULL` for no breaks
#' - `waiver()` for the default breaks
#' - A numeric vector of positions
#' @param xlimits The x-axis limits as one of:
#' - `NULL` to use the default scale range
#' - A numeric vector of length two providing the limits.
#' Use NA to refer to the existing minimum or maximum limits.
#' @param xintercept The x-value for the intersect.
#' @param xlab A string of the x-axis label.
#' @param yintercept The y-value for the intersect.
#' @param ylab A string of the x-axis label.
#' @param burrIII3.weight weight parameter for the Burr III distribution.
#' @param burrIII3.shape1 shape1 parameter for the Burr III distribution.
#' @param burrIII3.shape2 shape2 parameter for the Burr III distribution.
#' @param burrIII3.scale scale parameter for the Burr III distribution.
#' @param gamma.weight weight parameter for the gamma distribution.
#' @param gamma.shape shape parameter for the gamma distribution.
#' @param gamma.scale scale parameter for the gamma distribution.
#' @param gompertz.weight weight parameter for the Gompertz distribution.
#' @param gompertz.location location parameter for the Gompertz distribution.
#' @param gompertz.shape shape parameter for the Gompertz distribution.
#' @param invpareto.weight weight parameter for the inverse Pareto distribution.
#' @param invpareto.shape shape parameter for the inverse Pareto distribution.
#' @param invpareto.scale scale parameter for the inverse Pareto distribution.
#' @param lgumbel.weight weight parameter for the log-Gumbel distribution.
#' @param lgumbel.locationlog location parameter for the log-Gumbel distribution.
#' @param lgumbel.scalelog scale parameter for the log-Gumbel distribution.
#' @param llogis.weight weight parameter for the log-logistic distribution.
#' @param llogis.locationlog location parameter for the log-logistic distribution.
#' @param llogis.scalelog scale parameter for the log-logistic distribution.
#' @param llogis_llogis.weight weight parameter for the log-logistic log-logistic mixture distribution.
#' @param llogis_llogis.locationlog1 locationlog1 parameter for the log-logistic log-logistic mixture distribution.
#' @param llogis_llogis.scalelog1 scalelog1 parameter for the log-logistic log-logistic mixture distribution.
#' @param llogis_llogis.locationlog2 locationlog2 parameter for the log-logistic log-logistic mixture distribution.
#' @param llogis_llogis.scalelog2 scalelog2 parameter for the log-logistic log-logistic mixture distribution.
#' @param llogis_llogis.pmix pmix parameter for the log-logistic log-logistic mixture distribution.
#' @param lnorm.weight weight parameter for the log-normal distribution.
#' @param lnorm.meanlog meanlog parameter for the log-normal distribution.
#' @param lnorm.sdlog sdlog parameter for the log-normal distribution.
#' @param lnorm_lnorm.weight weight parameter for the log-normal log-normal mixture distribution.
#' @param lnorm_lnorm.meanlog1 meanlog1 parameter for the log-normal log-normal mixture distribution.
#' @param lnorm_lnorm.sdlog1 sdlog1 parameter for the log-normal log-normal mixture distribution.
#' @param lnorm_lnorm.meanlog2 meanlog2 parameter for the log-normal log-normal mixture distribution.
#' @param lnorm_lnorm.sdlog2 sdlog2 parameter for the log-normal log-normal mixture distribution.
#' @param lnorm_lnorm.pmix pmix parameter for the log-normal log-normal mixture distribution.
#' @param weibull.weight weight parameter for the Weibull distribution.
#' @param weibull.shape shape parameter for the Weibull distribution.
#' @param weibull.scale scale parameter for the Weibull distribution.
#' @param ... Unused.
#' @aliases parameters arguments args
#' @usage NULL
#' @export
# nocov start
params <- function(...) NULL
# nocov end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.