Nothing
#' Summary of Heckman-t Model
#'
#' @description
#' Prints a detailed summary of the parameter estimates and model fit
#' statistics for an object of class \code{HeckmantS}.
#'
#' @details
#' This method displays the maximum likelihood estimation results
#' for the Heckman sample selection model with Student's t-distributed errors.
#' It includes separate coefficient tables for:
#' \itemize{
#' \item Selection equation (Probit model),
#' \item Outcome equation,
#' \item Error terms (including \code{sigma}, \code{rho}, and \code{df}).
#' }
#' Model fit statistics (log-likelihood, AIC, BIC, and number of observations)
#' are also provided for model evaluation.
#'
#' @param object An object of class \code{HeckmantS}, containing the
#' fitted model results.
#' @param ... Additional arguments (currently unused).
#'
#' @return
#' Prints to the console:
#' \itemize{
#' \item Model fit statistics (log-likelihood, AIC, BIC, number of observations).
#' \item Coefficient tables with standard errors and significance stars.
#' }
#' Invisibly returns \code{NULL}.
#'
#' @examples
#' \dontrun{
#' data(MEPS2001)
#' attach(MEPS2001)
#' selectEq <- dambexp ~ age + female + educ + blhisp + totchr + ins + income
#' outcomeEq <- lnambx ~ age + female + educ + blhisp + totchr + ins
#' model <- HeckmantS(selectEq, outcomeEq, data = MEPS2001, df = 12)
#' summary(model)
#' }
#'
#' @seealso \code{\link{HeckmantS}}
#'
#' @export
summary.HeckmantS <- function(object, ...) {
# Extract components from the HeckmantS object
fisher_infotS <- object$fisher_infotS # Fisher information matrix (not printed)
prop_sigmatS <- object$prop_sigmatS # Standard errors of the estimates
coeffstS <- object$coefficients # Estimated coefficients
counts <- object$counts # Number of iterations in optimization
value <- object$value # Log-likelihood at convergence
loglik <- object$loglik # Log-likelihood function
NObs <- object$NObs # Total number of observations
nParam <- object$nParam # Number of free parameters
df <- object$df # Degrees of freedom
NXS <- object$NXS # Number of covariates in selection equation
NXO <- object$NXO # Number of covariates in outcome equation
N0 <- object$N0 # Number of censored observations
N1 <- object$N1 # Number of observed (uncensored) observations
aic <- object$aic # Akaike Information Criterion
bic <- object$bic # Bayesian Information Criterion
# Generate coefficient tables
tb1 <- miscTools::coefTable(coeffstS[1:NXS], prop_sigmatS[1:NXS], df = df) # Selection equation
tb2 <- miscTools::coefTable(coeffstS[(NXS + 1):(NXS + NXO)], prop_sigmatS[(NXS + 1):(NXS + NXO)], df = df) # Outcome equation
tb3 <- miscTools::coefTable(coeffstS[(NXS + NXO + 1):(NXS + NXO + 3)], prop_sigmatS[(NXS + NXO + 1):(NXS + NXO + 3)], df = df) # Error and df terms
tb <- miscTools::coefTable(coeffstS, prop_sigmatS, df = df) # Full model (not printed but kept)
# Print summary output
cat("\n")
cat("--------------------------------------------------------------\n")
cat(" t-Student Heckman Model (Package: ssmodels) \n")
cat("--------------------------------------------------------------\n")
cat("--------------------------------------------------------------\n")
cat("Maximum Likelihood estimation \n")
cat("optim function with method BFGS - iterations number:", counts, "\n")
cat("Log-Likelihood:", value, "\n")
cat("AIC:", aic, "BIC:", bic, "\n")
cat("Number of observations:", NObs, "(", N0, "censored and", N1, "observed )\n")
cat(nParam, "free parameters ( df =", df, ")\n")
cat("--------------------------------------------------------------\n")
cat("Probit selection equation:\n")
printCoefmat(tb1, signif.stars = TRUE, signif.legend = FALSE, digits = 4)
cat("--------------------------------------------------------------\n")
cat("Outcome equation:\n")
printCoefmat(tb2, signif.stars = TRUE, signif.legend = FALSE, digits = 4)
cat("--------------------------------------------------------------\n")
cat("Error terms:\n")
printCoefmat(tb3, signif.stars = TRUE, signif.legend = TRUE, digits = 4)
cat("--------------------------------------------------------------\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.