Description Usage Arguments Details Value Author(s) References Examples
It provides the density and random number generator.
| 1 2 | 
| x | vector of observations. | 
| n | numbers of observations. | 
| mu | location parameter. | 
| sigma2 | scale parameter. | 
| lambda | skewness parameter. | 
| nu | degree freedom | 
| family | distribution family to be used in fitting ("skew.t.t", "skew.generalized.laplace.normal, "skew.slash.normal") | 
As discussed in Jamalizadeh and Lin (2016) the scale-shape mixture of skew-normal (SSMSN) distribution admits the following conditioning-type stochasctic representation
Y=μ + σ τ_1^{-1/2}[Z_1 | (Z_2 < λ f^{-1/2} Z_1)],
where f = τ_1/τ_2 and (Z_1,Z_2) and (τ_1,τ_2) are independent. Alternatively the SSMSN distribution can be generated via the convolution-type stochastic representation, given by
Y=μ + σ ≤ft(\frac{τ_1^{-1/2} f^{1/2}}{√{f + λ^2}}Z_2 + \frac{λ τ_1^{-1/2}}{√{f + λ^2}}|Z_1|\right).
dssmsn gives the density, rssmsn generates a random sample.
The length of the result is determined by n for rssmsn, and is the maximum of the lengths of the numerical arguments for the other functions dssmsn.
Rocio Maehara rmaeharaa@gmail.com and Luis Benites lbenitesanchez@gmail.com
Jamalizadeh, Ahad and Lin, Tsung-I (2016). A general class of scale-shape mixtures of skew-normal distributions: properties and estimation. Computational Statistics, 1-24.
| 1 2 3 4 5 6 7 | rSTT  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t");hist(rSTT)
rSGLN <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal");hist(rSGLN)
rSSN  <- rssmsn(n=1000,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal");hist(rSSN)
dSTT  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=c(3,4),"skew.t.t")
dSGLN <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.generalized.laplace.normal")
dSSN  <- dssmsn(0.5,mu=-4,sigma2=1,lambda=1,nu=3,"skew.slash.normal")
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.