tests/testthat/_snaps/statpsych1.md

ci.mean returns valid matrix

Code
  res
Output
   Estimate        SE       LL       UL
       24.5 0.5771157 23.33267 25.66733

ci.stdmean returns valid matrix

Code
  res
Output
   Estimate adj Estimate        SE        LL       UL
   1.232877     1.209015 0.2124335 0.8165146 1.649239

ci.mean2 returns valid matrix

Code
  res
Output
                               Estimate        SE        t       df            p
  Equal Variances Assumed:          5.1 0.7151214 7.131656 48.00000 4.621279e-09
  Equal Variances Not Assumed:      5.1 0.6846568 7.448987 46.17476 1.898214e-09
                                     LL       UL
  Equal Variances Assumed:     3.662152 6.537848
  Equal Variances Not Assumed: 3.721998 6.478002

ci.lc.mean.bs returns valid matrix

Code
  res
Output
                               Estimate       SE         t       df            p
  Equal Variances Assumed:        -5.35 1.300136 -4.114955 36.00000 0.0002152581
  Equal Variances Not Assumed:    -5.35 1.300136 -4.114955 33.52169 0.0002372436
                                      LL        UL
  Equal Variances Assumed:     -7.986797 -2.713203
  Equal Variances Not Assumed: -7.993583 -2.706417

ci.tukey returns valid matrix

Code
  res
Output
       Estimate       SE          t       df            p         LL         UL
   1 2    -4.71 1.142459  -4.122686 36.20303 5.989090e-04  -7.501842  -1.918158
   1 3   -13.43 1.104078 -12.163998 36.95915 0.000000e+00 -16.125713 -10.734287
   2 3    -8.72 1.228730  -7.096758 37.87646 5.510492e-08 -11.717053  -5.722947

ci.ratio.mean2 returns valid matrix

Code
  res
Output
   Mean1    Mean2 Mean1/Mean2        LL      UL
    41.5 36.38462    1.140592 0.9837277 1.32247

ci.stdmean2 returns valid matrix

Code
  res
Output
                           Estimate adj Estimate        SE        LL       UL
  Unweighted standardizer: 1.174493     1.159240 0.2844012 0.6170771 1.731909
  Weighted standardizer:   1.174493     1.159240 0.2802826 0.6251494 1.723837
  Group 1 standardizer:    1.147541     1.117605 0.2975582 0.5643375 1.730744
  Group 2 standardizer:    1.203438     1.172044 0.3120525 0.5918268 1.815050

ci.stdmean.strat returns valid matrix

Code
  res
Output
                            Estimate adj Estimate         SE         LL        UL
  Weighted standardizer: -0.05538872  -0.05528428 0.10023259 -0.2518410 0.1410636
  Group 1 standardizer:  -0.05714286  -0.05692722 0.10368609 -0.2603639 0.1460782
  Group 2 standardizer:  -0.05357143  -0.05692722 0.09720571 -0.2440911 0.1369483

ci.lc.stdmean.bs returns valid matrix

Code
  res
Output
                            Estimate adj Estimate        SE        LL         UL
  Unweighted standardizer: -1.301263    -1.273964 0.3692800 -2.025039 -0.5774878
  Weighted standardizer:   -1.301263    -1.273964 0.3514511 -1.990095 -0.6124317
  Group 1 standardizer:    -1.393229    -1.273810 0.4849842 -2.343781 -0.4426775

ci.mean.ps returns valid matrix

Code
  res
Output
   Estimate       SE        t df           p       LL       UL
        6.8 1.455922 4.670578 29 6.33208e-05 3.822304 9.777696

ci.ratio.mean.ps returns valid matrix

Code
  res
Output
    Mean1 Mean2 Mean1/Mean2      LL       UL
   3.4875 3.075    1.134146 1.09417 1.175583

ci.stdmean.ps returns valid matrix

Code
  res
Output
                               Estimate adj Estimate        SE        LL
  Unweighted standardizer:    0.5550319    0.5433457 0.1609934 0.2394905
  Measurement 1 standardizer: 0.5424837    0.5253526 0.1615500 0.2258515
  Measurement 2 standardizer: 0.5684932    0.5505407 0.1692955 0.2366800
                                     UL
  Unweighted standardizer:    0.8705732
  Measurement 1 standardizer: 0.8591158
  Measurement 2 standardizer: 0.9003063

ci.lc.stdmean.ws returns valid matrix

Code
  res
Output
                            Estimate adj Estimate        SE        LL         UL
  Unweighted standardizer: -1.301263    -1.266557 0.3147937 -1.918248 -0.6842788
  Level 1 standardizer:    -1.393229    -1.337500 0.3661824 -2.110934 -0.6755248

ci.mad returns valid matrix

Code
  res
Output
   Estimate       SE       LL       UL
       12.5 2.876103 7.962667 19.62282

ci.ratio.mad2 returns valid matrix

Code
  res
Output
       MAD1     MAD2 MAD1/MAD2        LL       UL
   5.111111 5.888889 0.8679245 0.4520879 1.666253

ci.ratio.mad.ps returns valid matrix

Code
  res
Output
       MAD1 MAD2 MAD1/MAD2       LL       UL
   12.71429  7.5  1.695238 1.109176 2.590961

ci.cv returns valid matrix

Code
  res
Output
    Estimate         SE        LL        UL
   0.1489796 0.01817373 0.1214381 0.1926778

ci.ratio.cv2 returns valid matrix

Code
  res
Output
   Estimate       LL       UL
   1.389188 1.041478 1.854101

ci.cod returns valid matrix

Code
  res
Output
    Estimate        SE        LL       UL
   0.5921053 0.1814708 0.3813259 1.092679

ci.median returns valid matrix

Code
  res
Output
   Estimate       SE LL UL
         20 4.270922 10 30

ci.median2 returns valid matrix

Code
  res
Output
   Median1 Median2 Median1-Median2       SE        LL          UL
      34.5      43            -8.5 4.316291 -16.95977 -0.04022524

ci.ratio.median2 returns valid matrix

Code
  res
Output
   Median1 Median2 Median1/Median2       LL       UL
        43      37        1.162162 0.927667 1.455933

ci.lc.median.bs returns valid matrix

Code
  res
Output
   Estimate       SE       LL       UL
      35.77 11.67507 12.88727 58.65273

ci.median.ps returns valid matrix

Code
  res
Output
   Median1 Median2 Median1-Median2       SE        LL        UL      SE1      SE2
        13      30             -17 3.362289 -23.58996 -10.41004 3.085608 4.509735
        COV
   9.276849

ci.ratio.median.ps returns valid matrix

Code
  res
Output
   Median1 Median2 Median1/Median2        LL        UL
        13      30       0.4333333 0.3094838 0.6067451

ci.mann returns valid matrix

Code
  res
Output
   Estimate        SE LL        UL
      0.205 0.1401834  0 0.4797544

ci.random.anova returns valid matrix

Code
  res
Output
                  Estimate         LL         UL
  Grand mean     59.200000 49.9363896 68.4636104
  Within SD:      9.166782  8.0509046 10.4373219
  Between SD:     8.585948  8.3239359  8.8562078
  Omega-squared:  0.467317  0.2284142  0.8480383

ci.cronbach returns valid matrix

Code
  res
Output
   Estimate         SE        LL        UL
       0.85 0.02456518 0.7971254 0.8931436

size.ci.mean returns valid number

Code
  res
Output
   Sample size
            43

size.ci.mean2 returns valid matrix

Code
  res
Output
   n1 n2
   47 47

size.ci.stdmean2 returns valid matrix

Code
  res
Output
                              n1  n2
  Unweighted standardizer:   132 132
  Single group standardizer: 141 141

size.ci.ratio.mean2 returns valid matrix

Code
  res
Output
   n1  n2
   53 106

size.ci.lc.mean.bs returns valid number

Code
  res
Output
   Sample size per group
                      34

size.ci.stdmean.ps returns valid number

Code
  res
Output
   Sample size
            19

size.ci.ratio.mean2 returns valid number

Code
  res
Output
                             Sample size
  Unweighted standardizer:            46
  Single group standardizer:          52

size.ci.ratio.mean.ps returns valid number

Code
  res
Output
   Sample size
            21

size.ci.lc.stdmean.ws returns valid matrix

Code
  res
Output
   Sample size
            11

size.ci.lc.mean.ws returns valid matrix

Code
  res
Output
                             Sample size
  Unweighted standardizer:            26
  Single level standardizer:          35

size.ci.cronbach returns valid number

Code
  res
Output
   Sample size
            89

size.ci.second returns valid number

Code
  res
Output
   Second-stage sample size
                         70

size.test.mean returns valid number

Code
  res
Output
   Sample size
            20

size.test.mean2 returns valid matrix

Code
  res
Output
   n1 n2
   27 27

size.test.lc.mean.bs returns valid matrix

Code
  res
Output
   Sample size per group
                      47

size.equiv.mean2 returns valid matrix

Code
  res
Output
   Sample size per group
                      50

size.supinf.mean2 returns valid matrix

Code
  res
Output
   Sample size per group
                     143

size.test.mean.ps returns valid number

Code
  res
Output
   Sample size
            22

size.test.lc.mean.ws returns valid matrix

Code
  res
Output
   Sample size
            29

size.equiv.mean.ps returns valid number

Code
  res
Output
   Sample size
            68

size.supinf.mean.ps returns valid number

Code
  res
Output
   Sample size
            38

size.test.mann returns valid number

Code
  res
Output
   Sample size per group
                      44

size.test.sign returns valid number

Code
  res
Output
   Sample size
            67

size.test.sign.ps returns valid number

Code
  res
Output
   Sample size
            42

size.test.cronbach returns valid number

Code
  res
Output
   Sample size
           139

pi.score returns valid matrix

Code
  res
Output
   Predicted df       LL       UL
        24.5 39 17.02546 31.97454

pi.score2 returns valid matrix

Code
  res
Output
                               Predicted       df       LL       UL
  Equal Variances Assumed:         11.22 83.00000 4.650454 17.78955
  Equal Variances Not Assumed:     11.22 72.34319 4.603642 17.83636

ci.var.upper returns valid number

Code
  res
Output
         UL
   17.23264

etasqr.adj returns valid number

Code
  res
Output
   adj Eta-squared
          0.282381

test.anova.bs returns valid matrix

Code
  res
Output
          F dfA dfE           p Eta-squared adj Eta-squared
   5.919585   2  57 0.004614428   0.1719831       0.1429298

etasqr.gen.2way returns valid matrix

Code
  res
Output
                                             A         B        AB
  A treatment, B classification:      0.300000 0.5435540 0.1811847
  A classification, B treatment:      0.484252 0.3804878 0.2047244
  A classification, B classification: 0.300000 0.3804878 0.1268293

ci.ratio.cod2 returns valid matrix

Code
  res
Output
        COD1      COD2 COD1/COD2       LL       UL
   0.1333333 0.1232558  1.081761 0.494964 2.282254

ci.etasqr returns valid matrix

Code
  res
Output
   Eta-squared adj Eta-squared         SE        LL        UL
         0.241       0.2213707 0.06258283 0.1040229 0.3493431

ci.reliability returns valid vector

Code
  res
Output
   Estimate        LL        UL
       0.88 0.8489612 0.9065575

ci.sign returns valid matrix

Code
  res
Output
   Estimate        SE        LL        UL
   0.826087 0.0790342 0.6711828 0.9809911

ci.slope.mean.bs returns valid matrix

Code
  res
Output
                                Estimate         SE        t       df
  Equal Variances Assumed:     0.3664407 0.06770529 5.412290 36.00000
  Equal Variances Not Assumed: 0.3664407 0.07336289 4.994905 18.65826
                                          p        LL        UL
  Equal Variances Assumed:     4.242080e-06 0.2291280 0.5037534
  Equal Variances Not Assumed: 8.468223e-05 0.2126998 0.5201815

test.mono.mean.bs returns valid matrix

Code
  res
Output
       Estimate       SE        LL         UL
   1 2   -11.71 4.139530 -22.07803 -1.3419744
   2 3   -11.72 4.399497 -22.74731 -0.6926939
   3 4   -16.92 4.730817 -28.76921 -5.0707936

power.mean returns valid matrix

Code
  res
Output
       Power
   0.8021669

power.mean2 returns valid matrix

Code
  res
Output
       Power
   0.8398417

power.mean.ps returns valid matrix

Code
  res
Output
       Power
   0.9074354

power.lc.bs returns valid matrix

Code
  res
Output
       Power
   0.7221171

ci.cqv returns valid matrix

Code
  res
Output
   Estimate        SE        LL        UL
        0.5 0.1552485 0.2617885 0.8841821

ci.ratio.sd2 returns valid matrix

Code
  res
Output
        SD1      SD2   SD1/SD2       LL       UL
   5.711587 6.450667 0.8854257 0.486279 1.728396

size.ci.etasqr returns valid matrix

Code
  res
Output
   Sample size per group
                      63

ci.2x2.stdmean.bs returns valid matrix

Code
  res
Output
              Estimate adj Estimate        SE         LL         UL
  AB:      -1.44976487   -1.4193502 0.6885238 -2.7992468 -0.1002829
  A:        0.46904158    0.4592015 0.3379520 -0.1933321  1.1314153
  B:       -0.75330920   -0.7375055 0.3451209 -1.4297338 -0.0768846
  A at b1: -0.25584086   -0.2504736 0.4640186 -1.1653006  0.6536189
  A at b2:  1.19392401    1.1688767 0.5001423  0.2136630  2.1741850
  B at a1: -1.47819163   -1.4471806 0.4928386 -2.4441376 -0.5122457
  B at a2: -0.02842676   -0.0278304 0.4820369 -0.9732017  0.9163482

ci.2x2.median.bs returns valid matrix

Code
  res
Output
           Estimate       SE         LL         UL
  AB:          -5.0 3.389735 -11.643758 1.64375833
  A:            1.5 1.694867  -1.821879 4.82187916
  B:           -2.0 1.694867  -5.321879 1.32187916
  A at b1:     -1.0 2.152661  -5.219138 3.21913797
  A at b2:      4.0 2.618464  -1.132095 9.13209504
  B at a1:     -4.5 2.311542  -9.030539 0.03053939
  B at a2:      0.5 2.479330  -4.359397 5.35939682

ci.2x2.stdmean.ws returns valid matrix

Code
  res
Output
              Estimate adj Estimate         SE           LL        UL
  AB:       0.17248839   0.16446123 0.13654635 -0.095137544 0.4401143
  A:        0.10924265   0.10415878 0.05752822 -0.003510596 0.2219959
  B:        0.07474497   0.07126653 0.05920554 -0.041295751 0.1907857
  A at b1:  0.19548684   0.18638939 0.08460680  0.029660560 0.3613131
  A at b2:  0.02299845   0.02192816 0.09371838 -0.160686202 0.2066831
  B at a1:  0.16098916   0.15349715 0.09457347 -0.024371434 0.3463498
  B at a2: -0.01149923  -0.01096408 0.08595873 -0.179975237 0.1569768

ci.2x2.stdmean.mixed returns valid matrix

Code
  res
Output
              Estimate adj Estimate        SE         LL         UL
  AB:      -1.95153666  -1.80141845 1.0268728 -3.9641704 0.06109706
  A:        1.90911195   1.82026682 0.5190413  0.8918096 2.92641425
  B:        1.06061775   0.97903177 0.3711681  0.3331416 1.78809392
  A at b1:  0.93334362   0.83480791 0.6028071 -0.2481367 2.11482389
  A at b2:  2.88488027   2.58031536 0.8396553  1.2391862 4.53057438
  B at a1:  0.08484942   0.07832254 0.5469232 -0.9871003 1.15679910
  B at a2:  2.03638608   1.87974099 0.7113341  0.6421968 3.43057538

ci.2x2.median.mixed returns valid matrix

Code
  res
Output
           Estimate       SE         LL        UL
  AB:         -3.50 2.681476 -8.7555973  1.755597
  A:           1.75 1.340738 -0.8777986  4.377799
  B:           4.25 1.028850  2.2334918  6.266508
  A at b1:     2.50 1.680868 -0.7944405  5.794441
  A at b2:     6.00 2.089258  1.9051295 10.094870
  B at a1:     0.00 1.313181 -2.5737873  2.573787
  B at a2:     3.50 1.996942 -0.4139342  7.413934

ci.2x2.median.w returns valid matrix

Code
  res
Output
           Estimate        SE         LL       UL
  AB:          2.50 21.050122 -38.757482 43.75748
  A:          24.75  9.603490   5.927505 43.57250
  B:          18.25  9.101881   0.410641 36.08936
  A at b1:    26.00 11.813742   2.845491 49.15451
  A at b2:    23.50 16.323093  -8.492675 55.49267
  B at a1:    19.50 15.710347 -11.291715 50.29171
  B at a2:    17.00 11.850202  -6.225970 40.22597

pi.var example

Code
  res
Output
        UL
   23.9724

pi.var.upper returns valid matrix

Code
  res
Output
         UL
   19.08182

ci.bayes.normal returns valid matrix

Code
  res
Output
   Posterior mean Posterior SD       LL       UL
          24.9226    0.5543895 23.83602 26.00919

spearmanbrown returns valid matrix

Code
  res
Output
   Reliability of r2 measurements
                             0.75

ci.mean.fpc returns valid matrix

Code
  res
Output
   Estimate        SE       LL       UL
       24.5 0.5381631 23.41146 25.58854

test.mean returns valid number

Code
  res
Output
          t df          p
   2.599132 39 0.01312665

size.ci.mean.prior returns valid matrix

Code
  res
Output
   Sample size
            44


Try the statpsych package in your browser

Any scripts or data that you put into this service are public.

statpsych documentation built on April 4, 2025, 3:20 a.m.