| Covariance Approximation | R Documentation |
Compute the best positive approximant for use in the STCOS model, under several prespecified covariance structures.
cov_approx_randwalk(Delta, S)
cov_approx_blockdiag(Delta, S)
Delta |
Covariance ( |
S |
Design matrix ( |
Let \bm{\Sigma} be an N \times N symmetric and positive-definite
covariance matrix and \bm{S} be an N \times r matrix with
rank r. The objective is to compute a matrix \bm{K} which minimizes
the Frobenius norm
\Vert \bm{\Sigma} - \bm{S} \bm{C} \bm{S}^\top {\Vert}_\textrm{F},
over symmetric positive-definite matrices \bm{C}. The
solution is given by
\bm{K} = (\bm{S}^\top \bm{S})^{-1} \bm{S}^\top \bm{\Sigma} \bm{S} (\bm{S}^\top \bm{S})^{-1}.
In the STCOS model, \bm{S} represents the design matrix from a basis
function computed from a fine-level support having n areas, using
T time steps. Therefore N = n T represents the dimension of
covariance for the fine-level support.
We provide functions to handle some possible structures for target covariance matrices of the form
\bm{\Sigma} =
\left(
\begin{array}{ccc}
\bm{\Gamma}(1,1) & \cdots & \bm{\Gamma}(1,T) \\
\vdots & \ddots & \vdots \\
\bm{\Gamma}(T,1) & \cdots & \bm{\Gamma}(T,T)
\end{array}
\right),
where each \bm{\Gamma}(s,t) is an n \times n matrix.
cov_approx_randwalk assumes \bm{\Sigma} is based on the
autocovariance function of a random walk
\bm{Y}_{t+1} = \bm{Y}_{t} + \bm{\epsilon}_t, \quad \bm{\epsilon}_t \sim \textrm{N}(\bm{0}, \bm{\Delta}).
so that
\bm{\Gamma}(s,t) = \min(s,t) \bm{\Delta}.
cov_approx_blockdiag assumes \bm{\Sigma} is based on
\bm{Y}_{t+1} = \bm{Y}_{t} + \bm{\epsilon}_t, \quad \bm{\epsilon}_t \sim \textrm{N}(\bm{0}, \bm{\Delta}).
which are independent across t, so that
\bm{\Gamma}(s,t) = I(s = t) \bm{\Delta},
The block structure is used to reduce the computational burden, as N
may be large.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.