R/condeff.R

Defines functions cond_categorical_i cond_numeric_i cond_effect

Documented in cond_effect

#' @title Conditional Effects
#'
#' @description Compute the conditional effects in a moderated regression model.
#'
#' @details [cond_effect()] uses the centering approach to find the conditional
#' effect of the focal variable. For each level of the moderator, the value for
#' this level is subtracted from the moderator scores, and the model is
#' fitted to the modified data.
#' The coefficient of the focal variable is then the conditional effect of the
#' focal variable when the moderator's score is equal this value.
#'
#' @return
#' [cond_effect()] returns a data-frame-like object of the conditional effects.
#' The class is
#' `cond_effect` and the print method will print additional information of
#' the conditional effects. Additional information is stored in the
#' following attributes:
#'
#' - `call`: The original call.
#'
#' - `output`: The `output` object, such as the output from `lm()`.
#'
#' - `x`, `y`, and `w`: The three variables used to compute the conditional
#'                      effects: focal variable (`x`), outcome variable (`y`),
#'                      and the moderator (`w`).
#'
#'  - `w_method`: The method used to determine the values of the moderator
#'                at the selected levels.
#'
#'  - `w_percentiles` The percentiles to use if `w_method` = `"percentile"`.
#'
#'  - `w_sd_to_percentiles`: If not equal to `NA`, this is a scalar, the
#'                           number of standard deviation from the mean used to
#'                           determine the percentiles for the "low" and "high"
#'                           levels of the moderator.
#'  - `w_from_mean_in_sd`: The number of SD above or below the mean, for
#'                          determining the "low" and "high" levels of the
#'                          moderator if `w_method` is `"sd"`.
#'  - `w_empirical_percentiles`: The actual percentile levels in the dataset
#'                               for the selected
#'                               levels of the moderator. A numeric vector.
#'  - `w_empirical_z`: The actual distance from the mean, in SD, of each
#'                     selected level of the moderator. A numeric vector.
#'  - `y_standardized`, `x_standardized`, and `w_standardized`: Each of them
#'                     is a logical scalar, indicating whether the outcome
#'                     variable, focal variable, and moderator are standardized.
#'
#' @param output The output from [stats::lm()]. It can also accept the output
#'               from
#'               [std_selected()] or [std_selected_boot()].
#' @param x      The focal variable (independent variable), that is, the
#'               variable with its effect on the outcome variable (dependent)
#'              being moderated. It must be a numeric variable.
#' @param w      The moderator. Both numeric variables and categorical variables
#'               (character or factor) are supported.
#' @param w_method How to define "low", "medium", and "high" for the moderator
#'                  levels.
#'                  Default is in terms of mean and
#'                  standard deviation (SD) of the moderator, `"sd"`:
#'                  "low", "medium", and "high" are one SD below mean,
#'                  mean, and one SD above mean, respectively.
#'                  If equal to
#'                  `"percentile"`, then percentiles of the moderator in
#'                  the
#'                  dataset are used: "low", "medium", and "high" are
#'                  16th, 50th (median), and 84th percentiles, respectively.
#'                  Ignored if `w` is categorical.
#' @param w_percentiles If `w_method` is `"percentile"`, then this
#'                      argument
#'                      specifies the three percentiles to be used,
#'                      divided by 100.
#'                        It must be a
#'                      vector of two numbers. The default is
#'                      `c(.16, .50, .84)`,
#'                      the 16th, 50th, and 84th percentiles,
#'                      which corresponds approximately
#'                      to one SD below and above mean in a
#'                      normal distribution, respectively.
#'                      Ignored if `w` is categorical.
#' @param w_sd_to_percentiles If `w_method` is `"percentile"` and
#'                            this argument is
#'                            set to a number, this number will be
#'                            used to
#'                            to determine the percentiles to be used.
#'                            The
#'                            lower percentile is the percentile in a
#'                            normal
#'                            distribution
#'                            that is `w_sd_to_percentiles` SD below
#'                            the mean.
#'                            The upper percentile is the percentile in
#'                            a normal
#'                            distribution that is `w_sd_to_percentiles`
#'                            SD
#'                            above the mean. Therefore, if
#'                            `w_sd_to_percentiles` is set to 1, then the
#'                            lower
#'                            and upper percentiles are 16th and 84th,
#'                            respectively. Default is `NA`.
#' @param w_from_mean_in_sd How many SD from mean is used to define
#'                          "low" and
#'                          "high" for the moderator. Default is 1.
#'                          Ignored if `w` is categorical.
#'
#' @param w_values The values of `w` to
#' be used. Default is `NULL`. If a
#' numeric vector is supplied, these
#' values will be used to compute the
#' conditional effects. Other arguments
#' on generating levels are ignored.
#' Note that, if `w` has been standardized
#' or centered, these values are for
#' the standardized or centered `w`.
#' The values will always be sorted.
#' This argument is ignored if `w` is
#' categorical.
#'
#' @author Shu Fai Cheung <https://orcid.org/0000-0002-9871-9448>
#'
#'
#' @examples
#'
#' # Load a sample data set
#'
#' dat <- test_x_1_w_1_v_1_cat1_n_500
#'
#' # Do a moderated regression by lm
#' lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
#' summary(lm_raw)
#' cond_effect(lm_raw, x = iv, w = mod)
#'
#' lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
#' cond_effect(lm_std, x = iv, w = mod)
#'
#' # Categorical moderator
#' lm_cat <- lm(dv ~ iv*cat1 + v1, dat)
#' summary(lm_cat)
#' cond_effect(lm_cat, x = iv, w = cat1)
#'
#' @export
#' @order 1

cond_effect <- function(output,
                      x = NULL,
                      w = NULL,
                      w_method = c("sd", "percentile"),
                      w_percentiles = c(.16, .50, .84),
                      w_sd_to_percentiles = NA,
                      w_from_mean_in_sd = 1,
                      w_values = NULL
                      ) {
    mf0 <- stats::model.frame(output)
    w_method <- match.arg(w_method)
    x0 <- deparse(substitute(x))
    if (inherits(tryCatch(x00 <- as.character(x), error = function(e) e),
                 "simpleError")) {
        x <- x0
      } else {
        x <- x00
      }
    w0 <- deparse(substitute(w))
    if (inherits(tryCatch(w00 <- as.character(w), error = function(e) e),
                 "simpleError")) {
        w <- w0
      } else {
        w <- w00
      }
    y <- colnames(stats::model.frame(output))[
                    attr(stats::terms(output), "response")
                  ]
    x_numeric <- is.numeric(mf0[, x])
    w_numeric <- is.numeric(mf0[, w])
    if (!x_numeric) {
        stop("x variable must be a numeric variable.")
      }
    output0 <- output
    if (inherits(output, "std_selected")) {
        tmp <- class(output0)
        class(output0) <- tmp[!(tmp %in% "std_selected")]
      }
    if (w_numeric) {
        if (is.numeric(w_values)) {
            w_levels <- sort(w_values, decreasing = TRUE)
            w_levels_labels <- as.character(w_levels)
          } else {
            w_levels <- gen_levels(mf0[, w],
                                  method = w_method,
                                  from_mean_in_sd = w_from_mean_in_sd,
                                  levels = c(-1, 0, 1),
                                  sd_levels = c(-1, 0, 1),
                                  sd_to_percentiles = w_sd_to_percentiles,
                                  percentiles = w_percentiles)
            w_levels <- sort(w_levels, decreasing = TRUE)
            w_levels_labels <- c("High", "Medium", "Low")
          }
      } else {
        w_levels <- levels(as.factor(mf0[, w]))
        w_levels_labels <- w_levels
      }
    if (w_numeric) {
        out_all <- lapply(w_levels, cond_numeric_i,
                          output = output0,
                          w = w)
      } else {
        out_all <- lapply(w_levels, cond_categorical_i,
                          output = output0,
                          w = w)
      }
    coef_all <- lapply(out_all, function(xi) summary(xi)$coefficients[x, ])
    out0 <- do.call(rbind, coef_all)
    out0 <- data.frame(Level = w_levels_labels,
                       w = w_levels,
                       out0, check.names = FALSE)
    colnames(out0)[2] <- w
    colnames(out0)[3] <- "x's Effect"
    mycall <- match.call()
    attr(out0, "call") <- mycall
    attr(out0, "output") <- output
    attr(out0, "x") <- x
    attr(out0, "y") <- y
    attr(out0, "w") <- w
    attr(out0, "w_method") <- w_method
    attr(out0, "w_percentiles") <- w_percentiles
    attr(out0, "w_sd_to_percentiles") <- w_sd_to_percentiles
    attr(out0, "w_from_mean_in_sd") <- w_from_mean_in_sd
    if (w_numeric) {
        wecdf <- stats::ecdf(mf0[, w])
        w_pq <- wecdf(w_levels)
        w_mean <- mean(mf0[, w], na.rm = TRUE)
        w_sd  <- stats::sd(mf0[, w], na.rm = TRUE)
        w_z <- (w_levels - w_mean) / w_sd
      } else {
        w_pq <- rep(NA, length(w_levels))
        w_z <- rep(NA, length(w_levels))
      }
    attr(out0, "w_empirical_percentiles") <- w_pq
    attr(out0, "w_empirical_z") <- w_z
    attr(out0, "y_standardized") <- is_standardized(mf0[, y])
    attr(out0, "x_standardized") <- is_standardized(mf0[, x])
    attr(out0, "w_standardized") <- is_standardized(mf0[, w])
    attr(out0, "out_all") <- out_all
    class(out0) <- c("cond_effect", class(out0))
    out0
  }

cond_numeric_i <- function(w_i, output, w) {
    mf_i <- stats::model.frame(output)
    mf_i[, w] <- mf_i[, w] - w_i
    out <- stats::update(output, data = mf_i)
    out
  }

cond_categorical_i <- function(w_i, output, w) {
    mf_i <- stats::model.frame(output)
    mf_i[, w] <- stats::relevel(as.factor(mf_i[, w]),
                                ref = w_i)
    out <- stats::update(output, data = mf_i)
    out
  }

Try the stdmod package in your browser

Any scripts or data that you put into this service are public.

stdmod documentation built on Sept. 30, 2024, 9:42 a.m.