ForestModelConfig | R Documentation |
The "low-level" stochtree interface enables a high degreee of sampler customization, in which users employ R wrappers around C++ objects like ForestDataset, Outcome, CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom modifications. ForestModelConfig allows users to specify / query the parameters of a forest model they wish to run.
Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)
Vector specifying sampling probability for all p covariates in ForestDataset
Root node split probability in tree prior
Depth prior penalty in tree prior
Minimum number of samples in a tree leaf
Maximum depth of any tree in the ensemble in the model
Scale parameter used in Gaussian leaf models
Shape parameter for IG leaf models
Scale parameter for IG leaf models
Number of unique cutpoints to consider
feature_types
Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)
num_trees
Number of trees in the forest being sampled
num_features
Number of features in training dataset
num_observations
Number of observations in training dataset
leaf_dimension
Dimension of the leaf model
alpha
Root node split probability in tree prior
beta
Depth prior penalty in tree prior
min_samples_leaf
Minimum number of samples in a tree leaf
max_depth
Maximum depth of any tree in the ensemble in the model. Setting to -1
does not enforce any depth limits on trees.
leaf_model_type
Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf regression, 2 = multivariate leaf regression)
leaf_model_scale
Scale parameter used in Gaussian leaf models
variable_weights
Vector specifying sampling probability for all p covariates in ForestDataset
variance_forest_shape
Shape parameter for IG leaf models (applicable when leaf_model_type = 3
)
variance_forest_scale
Scale parameter for IG leaf models (applicable when leaf_model_type = 3
)
cutpoint_grid_size
Number of unique cutpoints to consider Create a new ForestModelConfig object.
new()
ForestModelConfig$new( feature_types = NULL, num_trees = NULL, num_features = NULL, num_observations = NULL, variable_weights = NULL, leaf_dimension = 1, alpha = 0.95, beta = 2, min_samples_leaf = 5, max_depth = -1, leaf_model_type = 1, leaf_model_scale = NULL, variance_forest_shape = 1, variance_forest_scale = 1, cutpoint_grid_size = 100 )
feature_types
Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)
num_trees
Number of trees in the forest being sampled
num_features
Number of features in training dataset
num_observations
Number of observations in training dataset
variable_weights
Vector specifying sampling probability for all p covariates in ForestDataset
leaf_dimension
Dimension of the leaf model (default: 1
)
alpha
Root node split probability in tree prior (default: 0.95
)
beta
Depth prior penalty in tree prior (default: 2.0
)
min_samples_leaf
Minimum number of samples in a tree leaf (default: 5
)
max_depth
Maximum depth of any tree in the ensemble in the model. Setting to -1
does not enforce any depth limits on trees. Default: -1
.
leaf_model_type
Integer specifying the leaf model type (0 = constant leaf, 1 = univariate leaf regression, 2 = multivariate leaf regression). Default: 0
.
leaf_model_scale
Scale parameter used in Gaussian leaf models (can either be a scalar or a q x q matrix, where q is the dimensionality of the basis and is only >1 when leaf_model_int = 2
). Calibrated internally as 1/num_trees
, propagated along diagonal if needed for multivariate leaf models.
variance_forest_shape
Shape parameter for IG leaf models (applicable when leaf_model_type = 3
). Default: 1
.
variance_forest_scale
Scale parameter for IG leaf models (applicable when leaf_model_type = 3
). Default: 1
.
cutpoint_grid_size
Number of unique cutpoints to consider (default: 100
)
A new ForestModelConfig object.
update_feature_types()
Update feature types
ForestModelConfig$update_feature_types(feature_types)
feature_types
Vector of integer-coded feature types (integers where 0 = numeric, 1 = ordered categorical, 2 = unordered categorical)
update_variable_weights()
Update variable weights
ForestModelConfig$update_variable_weights(variable_weights)
variable_weights
Vector specifying sampling probability for all p covariates in ForestDataset
update_alpha()
Update root node split probability in tree prior
ForestModelConfig$update_alpha(alpha)
alpha
Root node split probability in tree prior
update_beta()
Update depth prior penalty in tree prior
ForestModelConfig$update_beta(beta)
beta
Depth prior penalty in tree prior
update_min_samples_leaf()
Update root node split probability in tree prior
ForestModelConfig$update_min_samples_leaf(min_samples_leaf)
min_samples_leaf
Minimum number of samples in a tree leaf
update_max_depth()
Update root node split probability in tree prior
ForestModelConfig$update_max_depth(max_depth)
max_depth
Maximum depth of any tree in the ensemble in the model
update_leaf_model_scale()
Update scale parameter used in Gaussian leaf models
ForestModelConfig$update_leaf_model_scale(leaf_model_scale)
leaf_model_scale
Scale parameter used in Gaussian leaf models
update_variance_forest_shape()
Update shape parameter for IG leaf models
ForestModelConfig$update_variance_forest_shape(variance_forest_shape)
variance_forest_shape
Shape parameter for IG leaf models
update_variance_forest_scale()
Update scale parameter for IG leaf models
ForestModelConfig$update_variance_forest_scale(variance_forest_scale)
variance_forest_scale
Scale parameter for IG leaf models
update_cutpoint_grid_size()
Update number of unique cutpoints to consider
ForestModelConfig$update_cutpoint_grid_size(cutpoint_grid_size)
cutpoint_grid_size
Number of unique cutpoints to consider
get_feature_types()
Query feature types for this ForestModelConfig object
ForestModelConfig$get_feature_types()
get_variable_weights()
Query variable weights for this ForestModelConfig object
ForestModelConfig$get_variable_weights()
get_alpha()
Query root node split probability in tree prior for this ForestModelConfig object
ForestModelConfig$get_alpha()
get_beta()
Query depth prior penalty in tree prior for this ForestModelConfig object
ForestModelConfig$get_beta()
get_min_samples_leaf()
Query root node split probability in tree prior for this ForestModelConfig object
ForestModelConfig$get_min_samples_leaf()
get_max_depth()
Query root node split probability in tree prior for this ForestModelConfig object
ForestModelConfig$get_max_depth()
get_leaf_model_scale()
Query scale parameter used in Gaussian leaf models for this ForestModelConfig object
ForestModelConfig$get_leaf_model_scale()
get_variance_forest_shape()
Query shape parameter for IG leaf models for this ForestModelConfig object
ForestModelConfig$get_variance_forest_shape()
get_variance_forest_scale()
Query scale parameter for IG leaf models for this ForestModelConfig object
ForestModelConfig$get_variance_forest_scale()
get_cutpoint_grid_size()
Query number of unique cutpoints to consider for this ForestModelConfig object
ForestModelConfig$get_cutpoint_grid_size()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.