GlobalModelConfig | R Documentation |
The "low-level" stochtree interface enables a high degreee of sampler customization, in which users employ R wrappers around C++ objects like ForestDataset, Outcome, CppRng, and ForestModel to run the Gibbs sampler of a BART model with custom modifications. GlobalModelConfig allows users to specify / query the global parameters of a model they wish to run.
Global error variance parameter
global_error_variance
Global error variance parameter Create a new GlobalModelConfig object.
new()
GlobalModelConfig$new(global_error_variance = 1)
global_error_variance
Global error variance parameter (default: 1.0
)
A new GlobalModelConfig object.
update_global_error_variance()
Update global error variance parameter
GlobalModelConfig$update_global_error_variance(global_error_variance)
global_error_variance
Global error variance parameter
get_global_error_variance()
Query global error variance parameter for this GlobalModelConfig object
GlobalModelConfig$get_global_error_variance()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.