localsummary | R Documentation |
The function breaks up the contribution of the local estimates to the fitted intensity, by plotting the overall intensity and the density kernel smoothing of some artificial intensities, obtained by imputing the quartiles of the local parameters' distributions.
localsummary(
x,
scaler = c("silverman", "IQR", "sd", "var"),
do.points = TRUE,
print.bw = FALSE,
zap = 1e-05,
par = TRUE
)
x |
An object of class |
scaler |
Optional. Controls the value for a scalar representation of the
spatial scale of the data.
Either a character string, |
do.points |
Add points to plot |
print.bw |
It prints the estimated oversmoothing (OS) bandwidth selector |
zap |
Noise threshold factor (default to 0.00001). A numerical value greater than or equal to 1.
If the range of pixel values is less than |
par |
Default to |
Nicoletta D'Angelo and Giada Adelfio
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
Davies, T.M. and Hazelton, M.L. (2010). Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Terrell, G.R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
locstppm, stlgcppm
# Local spatio-temporal Poisson process model
set.seed(2)
inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)},
par = c(0.005, 5))
inh_local <- locstppm(inh, formula = ~ x)
localsummary(inh_local)
# Local LGCP
catsub <- stp(greececatalog$df[1:200, ])
lgcp_loc <- stlgcppm(catsub, formula = ~ x, first = "local")
localsummary(lgcp_loc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.