View source: R/plot.stlgcppm.R
plot.stlgcppm | R Documentation |
The function plots the fitted intensity, displayed both in space and in space and time. In the case of local covariance parameters, the function returns the mean of the random intensity, displayed both in space and in space and time.
## S3 method for class 'stlgcppm'
plot(
x,
scaler = c("silverman", "IQR", "sd", "var"),
do.points = TRUE,
print.bw = FALSE,
zap = 1e-05,
par = TRUE,
...
)
x |
An object of class |
scaler |
Optional. Controls the value for a scalar representation of the
spatial scale of the data.
Either a character string, |
do.points |
Add points to plot |
print.bw |
It prints the estimated oversmoothing (OS) bandwidth selector |
zap |
Noise threshold factor (default to 0.00001). A numerical value greater than or equal to 1.
If the range of pixel values is less than |
par |
Default to |
... |
additional unused argument |
Nicoletta D'Angelo and Giada Adelfio
D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Siino, M., Adelfio, G., and Mateu, J. (2018). Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes. Stochastic environmental research and risk assessment, 32(12), 3525-3539.
Terrell, G.R. (1990). The maximal smoothing principle in density estimation, Journal of the American Statistical Association, 85, 470-477.
stlgcppm, print.stlgcppm, summary.stlgcppm, localsummary, localplot
catsub <- stp(greececatalog$df[1:200, ])
lgcp_loc <- stlgcppm(catsub, formula = ~ x, first = "local")
plot(lgcp_loc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.