mcmc_stpp_nonunif | R Documentation |
This function computes the posterior of a spatio-temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.
mcmc_stpp_nonunif(
data,
poly,
t_max = max(data$t),
t_mis = NULL,
param_init = NULL,
mcmc_param = NULL,
branching = TRUE,
print = TRUE,
sp_clip = TRUE
)
data |
- A DataFrame containing |
poly |
- matrix defining polygon ( |
t_max |
- maximum time value (default = max(times)) |
t_mis |
- vector of two elements describing missing time range (default = 'NULL') |
param_init |
- list of parameters of initial guess (default = 'NULL', will start with MLE) |
mcmc_param |
- list of mcmc parameters |
branching |
- using branching structure in estimation (default = 'TRUE') |
print |
- print progress (default = 'TRUE') |
sp_clip |
- when simulating missing data spatial points, clip spatial region back to observed region (default = 'TRUE') |
The default is to estimate the branching structure.
The model will also account to missing data if t_mis
is provided.
A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.