mcmc_temporal_contmark: Bayesian Estimation of Temporal Hawkes Model Parameters with...

View source: R/mcmc.R

mcmc_temporal_contmarkR Documentation

Bayesian Estimation of Temporal Hawkes Model Parameters with Categorical Marks

Description

This function computes the posterior of the parameters of a temporal exponential decay Hawkes model using Metropolis-with-in-Gibbs sampling.

Usage

mcmc_temporal_contmark(
  times,
  marks,
  wshape,
  t_max = max(times),
  t_mis = NULL,
  param_init = NULL,
  mcmc_param = NULL,
  branching = TRUE,
  dist = "Weibull",
  print = TRUE
)

Arguments

times

- vector of arrival times

marks

- vector of continuous marks

wshape

- fixed weibull shape parameter

t_max

- maximum time value (default = max(times))

t_mis

- Mx2 matrix, mth row contains two elements describing the mth missing time range (default = 'NULL')

param_init

- list of parameters of initial guess (default = 'NULL', will start with MLE)

mcmc_param

- list of mcmc parameters

branching

- using branching structure in estimation (default = 'TRUE')

dist

- distribution for marks string (default = "Weibull")

print

- print progress (default = 'TRUE')

Details

The default is to estimate the branching structure which is much more computationally efficient. The model will also account to missing data if t_mis is provided.

Value

A List containing the mcmc samples (samps), branching structure ('y', if 'TRUE'), and missing data ('zsamps' if 't_mis' is not 'NULL') If 't_mis' is not 'NULL' the mcmc samples will contain 'n_missing', the number of missing points estimated


stpphawkes documentation built on April 4, 2025, 3:22 a.m.