Nothing
#' Fit Machine Learning Regressor Models
#'
#' Through the \href{https://pycaret.gitbook.io/docs/get-started/quickstart#regression}{PyCaret}
#' module from `python`, this function fits many machine
#' learning models simultaneously with without requiring any `python`
#' programming on the part of the user. This function is
#' specifically designed for the regression models.
#' @param formula A linear formula object.
#' @param train_data A data.frame object that includes data to be trained on.
#' @param fit_models A character vector with all the possible Machine Learning
#' regressors that are currently being fit. The user may specify a subset of
#' them using a character vector.
#' \tabular{rl}{
#' ada \tab AdaBoost Regressor \cr
#' br \tab Bayesian Ridge \cr
#' dt \tab Decision Tree Regressor \cr
#' dummy \tab Dummy Regressor \cr
#' en \tab Elastic Net \cr
#' et \tab Extra Trees Regressor \cr
#' gbr \tab Gradient Boosting Regressor \cr
#' huber \tab Huber Regressor \cr
#' knn \tab K Neighbors Regressor \cr
#' lar \tab Least Angle Regression \cr
#' lasso \tab Lasso Regression \cr
#' lightgbm \tab Light Gradient Boosting Machine \cr
#' llar \tab Lasso Least Angle Regression \cr
#' lr \tab Linear Regression \cr
#' omp \tab Orthogonal Matching Pursuit \cr
#' par \tab Passive Aggressive Regressor \cr
#' rf \tab Random Forest Regressor\cr
#' ridge \tab Ridge Regression
#' }
#' @param sort_v A character vector indicating what to sort the tuned models on.
#' @param n_models An integer value defaulted to a large integer value to
#' return all possible models.
#' @param seed An integer value to set the seed of the `python` environment.
#' Default value is set to `NULL`.
#' @param ... Additional arguments passed onto \link[stressor]{mlm_init}.
#' @return A list object where the first entry is the models fitted and the
#' second is the initial predictive accuracy on the random test data. Returns
#' as two classes `"mlm_stressor"` and `"regressor"`.
#' @examplesIf python_avail()
#' lm_test <- data_gen_lm(20)
#' create_virtualenv()
#' mlm_lm <- mlm_regressor(Y ~ ., lm_test)
#' @inherit mlm_classification details
#' @export
mlm_regressor <- function(formula, train_data,
fit_models = c('ada', 'et', 'lightgbm','gbr',
'lr', 'rf', 'ridge', 'knn', 'dt',
'dummy', 'lar', 'br', 'huber', 'omp',
'lasso', 'en', 'llar', 'par'),
sort_v = c('MAE', 'MSE', 'RMSE', 'R2', 'RMSLE',
'MAPE'),
n_models = 9999, seed = NULL, ...) {
# Throw in a data_check/formula_check
data_check(formula, train_data)
integer_check(n_models)
obj <- mlm_init(formula, train_data, fit_models, sort_v, n_models,
seed = seed, ...)
class(obj) <- c(class(obj), "regressor")
obj
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.