Description Usage Arguments Details Value Note Author(s) References See Also Examples
Calculation of pairwise monotone and supremum dependence, monotone/supremum dependence ratio, and proportion of pairwise NAs.
1 | dependence(mat, cont = NULL, sc.order = 0)
|
mat |
k-column matrix with n observations of a k-dimensional random vector (NA values are allowed). |
cont |
vector of column numbers to consider/coerce as continuous random variables (optional). |
sc.order |
order of subcopula approximation (continuous random variables). If 0 (default) then maximum order m = n is used. Often m = 50 is a good recommended value, higher values demand more computing time. |
Each of the random variables in the k-dimensional random vector under consideration may be of any kind (discrete, continuous, or mixed). NA values are allowed.
A 3-dimensional array k\times k\times 4 with pairwise monotone and supremum dependence, monotone/supremum dependence ratio, and proportion of pairwise NAs.
NA values are allowed.
Arturo Erdely https://sites.google.com/site/arturoerdely
Erdely, A. (2017) A subcopula based dependence measure. Kybernetika 53(2), 231-243. DOI: 10.14736/kyb-2017-2-0231
Nelsen, R.B. (2006) An Introduction to Copulas. Springer, New York.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | V <- runif(300) # Continuous Uniform(0,1)
W <- V*(1-V) # Continuous transform of V
# X given V=v as continuous Uniform(0,v)
X <- mapply(runif, rep(1, length(V)), rep(0, length(V)), V)
Y <- 1*(0.2 < X)*(X < 0.6) # Discrete transform of X
Z <- X*(0.1 < X)*(X < 0.9) + 1*(X >= 0.9) # Mixed transform of X
V[1:10] <- NA # Introducing some NAs
W[3:12] <- NA # Introducing some NAs
Y[5:25] <- NA # Introducing some NAs
vector5D <- cbind(V, W, X, Y, Z) # Matrix of 5-variate observations
# Monotone and supremum dependence, ratio and proportion of NAs:
(deparray <- dependence(vector5D, cont = c(1, 2, 3), 30))
# Pearson's correlations:
cor(vector5D, method = "pearson", use = "pairwise.complete.obs")
# Spearman's correlations:
cor(vector5D, method = "spearman", use = "pairwise.complete.obs")
# Kendall's correlations:
cor(vector5D, method = "kendall", use = "pairwise.complete.obs")
pairs(vector5D) # Matrix of pairwise scatterplots
|
, , depMon
V W X Y Z
V 1.000000e+00 5.551115e-17 0.5793103 0.3314482 0.5934364
W 5.551115e-17 1.000000e+00 0.1993817 0.2788336 0.1948633
X 5.793103e-01 1.993817e-01 1.0000000 0.6923077 1.0000000
Y 3.314482e-01 2.788336e-01 0.6923077 1.0000000 0.6923077
Z 5.934364e-01 1.948633e-01 1.0000000 0.6923077 1.0000000
, , depSup
V W X Y Z
V 1.0000000 0.4975887 0.5793103 0.3782435 0.5976219
W 0.4975887 1.0000000 0.3428300 0.2907383 0.3535315
X 0.5793103 0.3428300 1.0000000 0.8461538 1.0000000
Y 0.3782435 0.2907383 0.8461538 1.0000000 0.8461538
Z 0.5976219 0.3535315 1.0000000 0.8461538 1.0000000
, , depMonSupRatio
V W X Y Z
V NA 1.115603e-16 1.0000000 0.8762826 0.9929964
W 1.115603e-16 NA 0.5815760 0.9590533 0.5511906
X 1.000000e+00 5.815760e-01 NA 0.8181818 1.0000000
Y 8.762826e-01 9.590533e-01 0.8181818 NA 0.8181818
Z 9.929964e-01 5.511906e-01 1.0000000 0.8181818 NA
, , propNAs
V W X Y Z
V 0.03333333 0.04000000 0.03333333 0.08333333 0.03333333
W 0.04000000 0.03333333 0.03333333 0.07666667 0.03333333
X 0.03333333 0.03333333 0.00000000 0.07000000 0.00000000
Y 0.08333333 0.07666667 0.07000000 0.07000000 0.07000000
Z 0.03333333 0.03333333 0.00000000 0.07000000 0.00000000
V W X Y Z
V 1.00000000 -0.02039053 0.65523740 0.3257470 0.64817063
W -0.02039053 1.00000000 -0.05186098 0.2627769 -0.03627899
X 0.65523740 -0.05186098 1.00000000 0.3773029 0.99508160
Y 0.32574699 0.26277695 0.37730288 1.0000000 0.40501302
Z 0.64817063 -0.03627899 0.99508160 0.4050130 1.00000000
V W X Y Z
V 1.00000000 -0.05189709 0.6660512 0.3213498 0.64400036
W -0.05189709 1.00000000 0.1255936 0.2619985 0.09528037
X 0.66605122 0.12559360 1.0000000 0.5860006 0.98348116
Y 0.32134981 0.26199853 0.5860006 1.0000000 0.59608940
Z 0.64400036 0.09528037 0.9834812 0.5960894 1.00000000
V W X Y Z
V 1.0000000 -0.06102400 0.50211192 0.2628576 0.4978540
W -0.0610240 1.00000000 0.09390288 0.2143067 0.0695476
X 0.5021119 0.09390288 1.00000000 0.4793242 0.9478015
Y 0.2628576 0.21430670 0.47932419 1.0000000 0.5061731
Z 0.4978540 0.06954760 0.94780154 0.5061731 1.0000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.