| NBTrainer | R Documentation |
Trains a probabilistic naive bayes model
Trains a naive bayes model. It is built on top high performance naivebayes R package.
priornumeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplacevalue used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernelif TRUE, density is used to estimate the densities of metric predictors
modelfor internal use
new()NBTrainer$new(prior, laplace, usekernel)
priornumeric, prior numeric vector with prior probabilities. vector with prior probabilities of the classes. If unspecified, the class proportions for the training set are used. If present, the probabilities should be specified in the order of the factor levels.
laplacenuemric, value used for Laplace smoothing. Defaults to 0 (no Laplace smoothing)
usekernellogical, if TRUE, density is used to estimate the densities of metric predictors
Create a new 'NBTrainer' object.
A 'NBTrainer' object.
data(iris) nb <- NBTrainer$new()
fit()NBTrainer$fit(X, y)
Xdata.frame containing train features
ycharacter, name of target variable
Fits the naive bayes model
NULL, trains and saves the model in memory
data(iris) nb <- NBTrainer$new() nb$fit(iris, 'Species')
predict()NBTrainer$predict(X, type = "class")
Xdata.frame containing test features
typecharacter, if the predictions should be labels or probability
Returns predictions from the model
NULL, trains and saves the model in memory
data(iris) nb <- NBTrainer$new() nb$fit(iris, 'Species') y <- nb$predict(iris)
clone()The objects of this class are cloneable with this method.
NBTrainer$clone(deep = FALSE)
deepWhether to make a deep clone.
## ------------------------------------------------
## Method `NBTrainer$new`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
## ------------------------------------------------
## Method `NBTrainer$fit`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
## ------------------------------------------------
## Method `NBTrainer$predict`
## ------------------------------------------------
data(iris)
nb <- NBTrainer$new()
nb$fit(iris, 'Species')
y <- nb$predict(iris)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.