approx_evdsi | R Documentation |
Calculate the expected value of the management decision given survey information. This metric describes the value of the management decision that is expected when the decision maker conducts a surveys a set of sites to inform the decision. To speed up the calculations, an approximation method is used.
approx_evdsi(
site_data,
feature_data,
site_detection_columns,
site_n_surveys_columns,
site_probability_columns,
site_management_cost_column,
site_survey_scheme_column,
site_survey_cost_column,
feature_survey_column,
feature_survey_sensitivity_column,
feature_survey_specificity_column,
feature_model_sensitivity_column,
feature_model_specificity_column,
feature_target_column,
total_budget,
site_management_locked_in_column = NULL,
site_management_locked_out_column = NULL,
prior_matrix = NULL,
n_approx_replicates = 100,
n_approx_outcomes_per_replicate = 10000,
seed = 500
)
site_data |
|
feature_data |
|
site_detection_columns |
|
site_n_surveys_columns |
|
site_probability_columns |
|
site_management_cost_column |
|
site_survey_scheme_column |
|
site_survey_cost_column |
|
feature_survey_column |
|
feature_survey_sensitivity_column |
|
feature_survey_specificity_column |
|
feature_model_sensitivity_column |
|
feature_model_specificity_column |
|
feature_target_column |
|
total_budget |
|
site_management_locked_in_column |
|
site_management_locked_out_column |
|
prior_matrix |
|
n_approx_replicates |
|
n_approx_outcomes_per_replicate |
|
seed |
|
This function uses approximation methods to estimate the
expected value calculations. The accuracy of these
calculations depend on the arguments to
n_approx_replicates
and n_approx_outcomes_per_replicate
, and
so you may need to increase these parameters for large problems.
A numeric
vector containing the expected values for each
replicate.
prior_probability_matrix()
.
# set seeds for reproducibility
set.seed(123)
# load example site data
data(sim_sites)
print(sim_sites)
# load example feature data
data(sim_features)
print(sim_features)
# set total budget for managing sites for conservation
# (i.e. 50% of the cost of managing all sites)
total_budget <- sum(sim_sites$management_cost) * 0.5
# create a survey scheme that samples the first two sites that
# are missing data
sim_sites$survey_site <- FALSE
sim_sites$survey_site[which(sim_sites$n1 < 0.5)[1:2]] <- TRUE
# calculate expected value of management decision given the survey
# information using approximation method
approx_ev_survey <- approx_evdsi(
sim_sites, sim_features,
c("f1", "f2", "f3"), c("n1", "n2", "n3"), c("p1", "p2", "p3"),
"management_cost", "survey_site",
"survey_cost", "survey", "survey_sensitivity", "survey_specificity",
"model_sensitivity", "model_specificity",
"target", total_budget)
# print mean value
print(mean(approx_ev_survey))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.