Nothing
#' Landmark estimator for three gap times distribution function.
#'
#' @description Provides estimates for three gap times distribution function
#' based on landmarking. The extension of the landmark estimator (LDM) to three
#' gap times is a consequence of Bayes' theorem.
#' @usage LDM3df(object, x, y, z)
#' @param object An object of class multidf.
#' @param x The first time for obtaining estimates for the trivariate
#' distribution function.
#' @param y The second time for obtaining estimates for the trivariate
#' distribution function.
#' @param z The third time for obtaining estimates for the trivariate
#' distribution function.
#' @return Vector with the Landmark estimates for three gap times distribution
#' function.
#' @references van Houwelingen, H.C. (2007). Dynamic prediction by landmarking
#' in event history analysis, Scandinavian Journal of Statistics, 34, 70-85.
#'
#' Kaplan, E. and Meier, P. (1958). Nonparametric Estimation from Incomplete
#' Observations, Journal of the American Statistical Association 53(282),
#' 457-481.
#' @seealso \code{\link{LDM3df}}, \code{\link{LIN3df}} and \code{\link{WCH3df}}.
#'
#' @examples
#' data("bladder5state")
#' b4state<-multidf(gap1=bladder5state$y1, event1=bladder4state$d1,
#' gap2=bladder5state$y2, event2=bladder4state$d2,
#' gap3=bladder5state$y3, status=bladder4state$d3)
#'
#' head(b4state)[[1]]
#'
#' LDM3df(b4state, x=13, y=20, z=40)
#'
#' b4<-multidf(gap1=bladder4$t1, event1=bladder4$d1,
#' gap2=bladder4$t2-bladder4$t1, event2=bladder4$d2,
#' gap3=bladder4$t3-bladder4$t2, status=bladder4state$d3)
#'
#' LDM3df(b4,x=13,y=20,z=40)
#'
#' @author Gustavo Soutinho and Luis Meira-Machado
LDM3df <-
function(object, x, y, z)
{
obj <- object[[1]]
p0 <- which(obj[,'time1'] <= x & obj[,'time2']-obj[,'time1'] <= y) #S pag.6
time2 <- obj[,'time2'] - obj[,'time1']
time3 <- obj[,'time'] - obj[,'time2']
ntime3 <- time3[p0]
p1 <- which(ntime3 <= z)
G <- KMW(obj[p0,'time'], obj[p0,'status'])
#db3 <- multidf(time1=obj$time1, event1=obj$event1,
# time=obj$time2,status=obj$event2)
db3 <- multidf(gap1=obj$time1, event1=obj$event1,
gap2=obj$time2-obj$time1,status=obj$event2)
est <- LDMdf(object=db3, x=x, y=y) * sum(G[p1]) #KM relativamente aos dois anteriores
return(est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.