Nothing
#' Lin's estimator for the bivariate distribution function.
#'
#' @description Provides estimates for the bivariate distribution function based
#' on the extension the Kaplan-Meier estimator of the distribution function for
#' the first event time and the Inverse Probability of Censoring Weights for the
#' second time.
#' @usage LINdf(object, x, y)
#' @param object An object of class multidf.
#' @param x The first time for obtaining estimates for the bivariate distribution
#' function.
#' @param y The second time for obtaining estimates for the bivariate
#' distribution function.
#' @return Vector with the Lin's estimates for the bivariate distribution
#' function.
#' @references Lin, D. Y., Sun, W. and Ying, Z. (1999). Nonparametric estimation
#' of the gap time distributions for serial events with censored data,
#' Biometrika 86, 59-70.
#'
#' @seealso \code{\link{IPCWdf}}, \code{\link{LDMdf}}, \code{\link{KMWdf}} and
#' \code{\link{WCHdf}}.
#'
#' @examples
#'
#' b3state<-multidf(gap1=bladder4state$y1, event1=bladder4state$d1,
#' gap2=bladder4state$y2, status=bladder4state$d2,
#' size=bladder4state$size)
#'
#' LINdf(b3,x=13,y=20)
#'
#' @author Gustavo Soutinho and Luis Meira-Machado
LINdf <-
function(object, x, y)
{
obj <- object[[1]]
ny <- length(y)
est <- rep(0,ny)
G <- KMW(obj$time1, obj$event1)
p <- which(obj$time1 <= x)
aux1 <- sum(G[p])
aux <- rep(0,length(obj$time1))
time2 <- obj$time - obj$time1
for (i in 1:ny){
for (j in 1:length(obj$time1)) { if (obj$time1[j] <= x & time2[j] > y[i])
aux[j] <- 1/KM(obj$time, 1 - obj$status, t = obj$time1[j]+y[i])}
aux <- aux/length(obj$time1)
est[i] <- aux1 - sum(aux)
}
return(est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.