Nothing
## ----message=FALSE, warning=FALSE---------------------------------------------
library(swaRmverse)
# load pacakge data for many species
data("multi_species_metrics")
## A] Create the swarm space for this data only:
all_data <- multi_species_metrics
## B] Or bind with new data if continuing from step2
data("new_species_metrics") ## loads the output of step 2
new_species_tobind <- new_species_metrics[,!colnames(new_species_metrics) %in% c('event_dur', 'N', 'set', 'start_time')] # remove columns not needed for the swarm space
all_data <- rbind(multi_species_metrics, new_species_tobind)
## C] Or to use just the new data (overwrites previous command, comment out to compare with the other species):
all_data <- new_species_metrics
## -----------------------------------------------------------------------------
new_pca <- swarm_space(metrics_data = all_data,
space_type = "pca"
)
ggplot2::ggplot(new_pca$swarm_space,
ggplot2::aes(x = PC1, y = PC2, color = species)
) +
ggplot2::geom_point() +
ggplot2::theme_bw()
## -----------------------------------------------------------------------------
pca_info <- new_pca$pca$rotation[, new_pca$pca$sdev > 1]
print(pca_info)
ref_data <- new_pca$ref
head(ref_data)
## -----------------------------------------------------------------------------
new_tsne <- swarm_space(metrics_data = all_data,
space_type = "tsne",
tsne_rand_seed = 2023,
tsne_perplexity = 10
)
print("t-SNE was run with the following parameters:")
print(new_tsne$tsne_setup)
ggplot2::ggplot(new_tsne$swarm_space, ggplot2::aes(x = X, y = Y, color = species)) +
ggplot2::geom_point() +
ggplot2::theme_bw()
## -----------------------------------------------------------------------------
data("multi_species_pca")
data("multi_species_pca_data")
new_pca_data <- expand_pca_swarm_space(metrics_data = new_species_metrics,
pca_space = multi_species_pca)
expanded_pca <- rbind(multi_species_pca_data,
new_pca_data)
ggplot2::ggplot(expanded_pca,
ggplot2::aes(x = PC1, y = PC2, color = species)) +
ggplot2::geom_point() +
ggplot2::theme_bw()
## ----message=FALSE, warning=FALSE---------------------------------------------
data("new_species_metrics") ## loads the output of step 2
## Use another dataset:
data_df <- get(data("tracks", package = "trackdf"))
data_df$set <- as.Date(data_df$t)
another_species <- col_motion_metrics_from_raw(data_df,
mov_av_time_window = 10,
step2time = 1,
geo = TRUE,
verbose = FALSE,
speed_lim = 0,
pol_lim = 0.3,
parallelize_all = FALSE
)
another_species$species <- "new_species_2"
## Bind all the datasets you want to compare here
all_data <- rbind(another_species, new_species_metrics)
new_pca <- swarm_space(metrics_data = all_data,
space_type = "pca"
)
ggplot2::ggplot(new_pca$swarm_space,
ggplot2::aes(x = PC1, y = PC2, color = species)
) +
ggplot2::geom_point() +
ggplot2::theme_bw()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.