swash-package | R Documentation |
Swash-Backwash Model for the single epidemic wave (Cliff and Haggett 2006) with additional functions for bootstrap confidence intervals and data management
The Swash-Backwash Model for the Single Epidemic Wave is the spatial equivalent of the classic epidemiological SIR (Susceptible-Infected-Recovered) model. It was developed by Cliff and Haggett (2006) to model the velocity of spread of infectious diseases across space. Current applications can be found, for example, in Smallman-Raynor et al. (2022a,b). This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The core of this is the swash()
function, which calculates the model and creates a model object of the sbm
class defined in this package. This class can be used to visualize results (summary()
, plot()
) and calculate bootstrap confidence intervals for the model estimates (confint(sbm)
). The package also contains additional helper functions.
Thomas Wieland
Swash-Backwash Model:
Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. Journal of Geographical Systems 8(3), 227-252. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1007/s10109-006-0027-8")}
Smallman-Raynor MR, Cliff AD, Stickler PJ (2022a) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. Geographical Analysis 54, 197–216. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1111/gean.12272")}
Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022b) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. Epidemiology and Infection 150, e145. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1017/S0950268822001285")}.
Basics of epidemiological modeling:
Li, MY (2018) An Introduction to Mathematical Modeling of Infectious Diseases. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1007/978-3-319-72122-4")}
Nishiura H, Chowell G (2009) The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In Chowell G, Hyman JM, Bettencourt LMA (eds.) Mathematical and statistical estimation approaches in epidemiology, 103–121. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1007/978-90-481-2313-1_5")}
Spatio-temporal analysis and modeling of infectious diseases:
Bourdin S, Jeanne L, Nadou F, Noiret G (2021) Does lockdown work? A spatial analysis of the spread and concentration of Covid-19 in Italy. Regional Studies, 55, 1182–1193. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1080/00343404.2021.1887471")}
Chowell G, Viboud C, Hyman JM, Simonsen L (2015) The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLOS Currents Outbreaks, ecurrents.outbreaks.8b55f4bad99ac5c5db3663e916803261. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261")}
Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT (2006) Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science 312,447-451. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1126/science.1125237")}
Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. REGION 7(2), 43–83. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.18335/region.v7i2.324")}
Panel data:
Greene, WH (2012) Econometric Analysis. Ch. 11.
Wooldridge, JM (2012) Introductory Econometrics. A Modern Approach. Ch. 13.
Bootstrapping und bootstrap confidence intervals:
Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap.
Ramachandran KM, Tsokos CP (2021) Mathematical Statistics with Applications in R (Third Edition). Ch. 13.3.1 (Bootstrap confidence intervals). \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1016/B978-0-12-817815-7.00013-0")}
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
CH_covidwave1 <-
swash (
data = COVID19Cases_geoRegion,
col_cases = "entries",
col_date = "datum",
col_region = "geoRegion"
)
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
summary(CH_covidwave1)
# Summary of Swash-Backwash Model
plot(CH_covidwave1)
# Plot of Swash-Backwash Model edges and total epidemic curve
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.