se.ratio.systemfit | R Documentation |
se.ratio.systemfit
returns a vector of the ratios of the
standard errors of the predictions for two equations.
se.ratio.systemfit( resultsi, resultsj, eqni )
resultsi |
an object of type |
resultsj |
an object of type |
eqni |
index for equation to obtain the ratio of standard errors. |
se.ratio
returns a vector of the standard errors of the ratios
for the predictions between the predicted values in equation i and
equation j.
Jeff D. Hamann jeff.hamann@forestinformatics.com
Hasenauer, H; Monserud, R and T. Gregoire. (1998) Using Simultaneous Regression Techniques with Individual-Tree Growth Models. Forest Science. 44(1):87-95
systemfit
and correlation.systemfit
data( "Kmenta" )
eqDemand <- consump ~ price + income
eqSupply <- consump ~ price + farmPrice + trend
inst <- ~ income + farmPrice + trend
system <- list( demand = eqDemand, supply = eqSupply )
## perform 2SLS on each of the equations in the system
fit2sls <- systemfit( system, "2SLS", inst = inst, data = Kmenta )
fit3sls <- systemfit( system, "3SLS", inst = inst, data = Kmenta )
## print the results from the fits
print( fit2sls )
print( fit3sls )
print( "covariance of residuals used for estimation (from 2sls)" )
print( fit3sls$residCovEst )
print( "covariance of residuals" )
print( fit3sls$residCov )
## examine the improvement of 3SLS over 2SLS by computing
## the ratio of the standard errors of the estimates
improve.ratio <- se.ratio.systemfit( fit2sls, fit3sls, 2 )
print( "summary values for the ratio in the std. err. for the predictions" )
print( summary( improve.ratio ) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.