Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(tatooheene)
library(dplyr)
## ----setup, eval = FALSE------------------------------------------------------
# # CRAN
# install.packages("tatooheene")
## ----load, eval = FALSE-------------------------------------------------------
# # Load the package
# library(tatooheene)
#
# # We recommend using the tidyverse style
# library(tidyverse)
## ----eval = FALSE-------------------------------------------------------------
# # Look up CPI indices with function nl_price_index()
# idx19_23 <- nl_price_index(
# start_year = 2019,
# end_year = 2023,
# output = "factor" # see ?nl_price_index for available outputs
# )
#
# idx19_23
#
# # Example tibble
# costs <- tibble::tibble(item = c("GP consult", "MRI"), cost_2019 = c(34.5, 285))
#
# # Adjust costs to 2024 EUR using the CPI index
# costs |>
# mutate(cost_2024 = cost_2019 * idx19_23)
## -----------------------------------------------------------------------------
# Get the friction period for 2023
v_5yr_mean_friction <- tatooheene::friction_period(
year = 2023, # Year of interest
units = "days", # We are interested in the number of days
avg = "5yr", # Use the 5-year average friction period as stated in the costing manual,
output = "value" # Return a single value
)
## -----------------------------------------------------------------------------
# Example sick-leave spells (days) and reference prices (EUR/day)
df_spells <- tibble::tibble(
id = 1:3,
sick_days = c(140, 122, 30))
# Get reference prices for productivity losses (paid work)
# These are in table df_rp_prod
# Get reference price for paid work in 2023
p_ref_prod_paid_2023 <- df_ref_prices |>
filter(short_var == "prodloss_paid_hour") %>%
pull(`2023`)
# Calculate productivity costs using the friction cost method
df_spells %>%
mutate(
# Apply the friction cost method
sick_days_friction = ifelse(
sick_days > v_5yr_mean_friction, v_5yr_mean_friction, sick_days),
# Calculate productivity costs
prod_cost = sick_days_friction * p_ref_prod_paid_2023)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.