$$ \begin{aligned} f(x|\kappa,\theta)&=\frac{1}{\Gamma\left(\kappa\right)\theta^{\kappa}}x^{\kappa-1}e^{-x/\theta}\\\\ F(x|\kappa,\theta)&=\frac{\Gamma_{I}\left(\kappa,x/\theta\right)}{\Gamma\left(\kappa\right)}\\\\ h(x|\kappa,\theta)&=\frac{x^{\kappa-1}e^{-x/\theta}}{\left(\Gamma\left(\kappa\right)-\Gamma_{I}\left(\kappa,x/\theta\right)\right)\theta^{\kappa}\Gamma\left(\kappa\right)}\\\\\ E[X]&=\kappa\theta\\\\ Var[X]&=\kappa\theta^{2} \end{aligned} $$
$\kappa \in \mathbb{R}^{+}$ is a shape parameter
$\theta \in \mathbb{R}^{+}$ is a scale parameter
$\Gamma(z)$ is the gamma function defined as
$$ \Gamma(z) = \begin{cases} \int_0^{\infty} x^{z-1}e^{-x}dx \hspace{12pt}\text{ if } z \in \mathbb{R}\\ (z - 1)! \hspace{40pt} \mbox{ if } z \in \mathbb{I} \end{cases} $$
$$ \Gamma_{I}(a,b) = \int_{0}^{b} t^{a-1}e^{-t}dt. $$
$\Gamma(z)$ values can be computed in R using the base function gamma(x)
$\Gamma_{I}(a,b)$ values can be computed using the gamma_inc(a,b)
function from the gsl
package
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.