Nothing
Code
res
Output
$data
{
anl <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
df_explicit_na(na_level = default_na_str())
}
$fit
fit <- tern.mmrm::fit_mmrm(vars = list(response = "AVAL", covariates = NULL,
id = "USUBJID", arm = "ARMCD", visit = "AVISIT"), data = anl,
conf_level = 0.95, method = "Satterthwaite", cor_struct = "unstructured",
weights_emmeans = "proportional", parallel = FALSE)
Code
res
Output
$data
{
anl <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
dplyr::mutate(ARMCD = combine_levels(ARMCD, levels = c("ARM B",
"ARM C"))) %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
dplyr::mutate(ARMCD = combine_levels(ARMCD, levels = c("ARM B",
"ARM C"))) %>% df_explicit_na(na_level = default_na_str())
}
$fit
fit <- tern.mmrm::fit_mmrm(vars = list(response = "AVAL", covariates = c("SEX",
"BASE", "AVISIT"), id = "USUBJID", arm = "ARMCD", visit = "AVISIT"),
data = anl, conf_level = 0.95, method = "Satterthwaite",
cor_struct = "unstructured", weights_emmeans = "proportional",
parallel = TRUE)
Code
res
Output
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARMCD",
ref_group = "ARM A") %>% rtables::split_rows_by("AVISIT") %>%
append_varlabels(ANL, "AVISIT") %>% tern.mmrm::summarize_lsmeans(show_relative = "increase") %>%
rtables::append_topleft(paste0(" ", "ALBUMIN"))
$cov_matrix
{
covariance_table <- tern.mmrm::as.rtable(fit_mmrm, type = "cov")
subtitles(covariance_table) <- NULL
}
Code
res
Output
$layout
lyt <- rtables::basic_table(show_colcounts = FALSE) %>% rtables::add_overall_col("All Patients") %>%
rtables::split_rows_by("AVISIT") %>% tern.mmrm::summarize_lsmeans(arms = FALSE) %>%
rtables::append_topleft(paste0(" ", "ALBUMIN"))
$cov_matrix
{
covariance_table <- tern.mmrm::as.rtable(fit_mmrm, type = "cov")
subtitles(covariance_table) <- NULL
}
Code
res
Output
$lsmeans_plot
{
lsmeans_plot <- tern.mmrm::g_mmrm_lsmeans(fit_mmrm, select = c("estimates",
"contrasts"), width = 0.6, show_pval = FALSE, titles = if (is.null(fit_mmrm$vars$arm)) {
c(estimates = paste("Adjusted mean of", fit_mmrm$labels$response,
" at visits"), contrasts = " ")
}
else {
c(estimates = paste("Adjusted mean of", fit_mmrm$labels$response,
"by treatment at visits"), contrasts = paste0("Differences of ",
fit_mmrm$labels$response, " adjusted means vs. control ('",
fit_mmrm$ref_level, "')"))
})
lsmeans_plot
}
$diagnostic_plot
{
diagnostic_plot <- tern.mmrm::g_mmrm_diagnostic(fit_mmrm,
type = "fit-residual", z_threshold = NULL)
diagnostic_plot
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.