Nothing
Code
res
Output
$data
{
anl <- adlb %>% dplyr::filter(ONTRTFL == "Y" & !is.na(ANRIND) &
ANRIND != "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- df_explicit_na(anl, na_level = "<Missing>")
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
{
map <- h_map_for_count_abnormal(df = anl, variables = list(anl = "ANRIND",
split_rows = c("AVISIT", "PARAM")), abnormal = list(low = c("LOW",
"LOW LOW"), high = c("HIGH", "HIGH HIGH")), method = "default",
na_str = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "my_title",
main_footer = "Variables without observed abnormalities are excluded.") %>%
rtables::split_cols_by(var = "ARM") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
rtables::split_rows_by("PARAM", split_label = teal.data::col_labels(adlb,
fill = FALSE)[["PARAM"]], label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
count_abnormal(var = "ANRIND", abnormal = list(low = c("LOW",
"LOW LOW"), high = c("HIGH", "HIGH HIGH")), variables = list(id = "USUBJID",
baseline = "BNRIND"), .indent_mods = 4L, exclude_base_abn = FALSE) %>%
append_varlabels(adlb, "ANRIND", indent = 2L)
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl) %>%
rtables::prune_table()
}
Code
res
Output
$data
{
anl <- adlb %>% dplyr::filter(MYTRTFL == "YES" & !is.na(MYANRIND) &
MYANRIND != "<Missing>")
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(adsl[["ARM"]])
anl <- anl %>% dplyr::mutate(ARM = factor(ARM, levels = arm_levels))
anl <- df_explicit_na(anl, na_level = "<Missing>")
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
{
map <- h_map_for_count_abnormal(df = anl, variables = list(anl = "MYANRIND",
split_rows = c("AVISIT", "PARAMCD")), abnormal = list(Low = "LOW",
Medium = "MEDIUM"), method = "default", na_str = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "my_title",
main_footer = "Variables without observed abnormalities are excluded.") %>%
rtables::split_cols_by(var = "ARM", split_fun = add_overall_level("All Patients",
first = FALSE)) %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
rtables::split_rows_by("PARAMCD", split_label = teal.data::col_labels(adlb,
fill = FALSE)[["PARAMCD"]], label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
count_abnormal(var = "MYANRIND", abnormal = list(Low = "LOW",
Medium = "MEDIUM"), variables = list(id = "USUBJID",
baseline = "MYBASELINE"), .indent_mods = 4L, exclude_base_abn = TRUE) %>%
append_varlabels(adlb, "MYANRIND", indent = 2L)
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl) %>%
rtables::prune_table()
}
Code
res
Output
$data
{
anl <- adlb %>% dplyr::filter(ONTRTFL == "Y" & !is.na(ANRIND) &
ANRIND != "NA")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- df_explicit_na(anl, na_level = "NA")
adsl <- df_explicit_na(adsl, na_level = "NA")
}
$layout_prep
{
map <- h_map_for_count_abnormal(df = anl, variables = list(anl = "ANRIND",
split_rows = c("AVISIT", "PARAM")), abnormal = list(low = c("LOW",
"LOW LOW"), high = c("HIGH", "HIGH HIGH")), method = "default",
na_str = "NA")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "my_title",
main_footer = "Variables without observed abnormalities are excluded.") %>%
rtables::split_cols_by(var = "ARM") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
rtables::split_rows_by("PARAM", split_label = teal.data::col_labels(adlb,
fill = FALSE)[["PARAM"]], label_pos = "topleft", split_fun = trim_levels_to_map(map = map)) %>%
count_abnormal(var = "ANRIND", abnormal = list(low = c("LOW",
"LOW LOW"), high = c("HIGH", "HIGH HIGH")), variables = list(id = "USUBJID",
baseline = "BNRIND"), .indent_mods = 4L, exclude_base_abn = FALSE) %>%
append_varlabels(adlb, "ANRIND", indent = 2L)
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl) %>%
rtables::prune_table()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.