Nothing
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for Function/Well-Being (GF1,GF3,GF7) and BFI All Questions at WEEK 1 DAY 8 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% summarize_ancova(vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "STRATA1")),
conf_level = 0.95, var_labels = "Adjusted mean", show_labels = "hidden",
.labels = NULL)
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for Function/Well-Being (GF1,GF3,GF7) and BFI All Questions at WEEK 1 DAY 8 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% rtables::append_topleft(paste0(" Interaction Variable: ",
"SEX")) %>% summarize_ancova(vars = "CHG", variables = list(arm = "ARMCD",
covariates = c("BASE", "STRATA1", "ARMCD*SEX")), conf_level = 0.95,
var_labels = paste("Interaction Level:", "M"), show_labels = if (FALSE) "hidden" else "visible",
interaction_y = "M", interaction_item = "SEX")
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM B", "ARM C"))) %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM B", "ARM C"))) %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for A and B at WEEK 1 DAY 8 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% summarize_ancova(vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "STRATA1")),
conf_level = 0.95, var_labels = "Adjusted mean", show_labels = "hidden",
.labels = NULL)
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM B", "ARM C",
"ARM A")) %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM B", "ARM C"), new_level = "ARM B/ARM C")) %>%
dplyr::mutate(ARMCD = stats::relevel(ARMCD, ref = "ARM B/ARM C")) %>%
droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM B", "ARM C",
"ARM A")) %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM B", "ARM C"), new_level = "ARM B/ARM C")) %>%
dplyr::mutate(ARMCD = stats::relevel(ARMCD, ref = "ARM B/ARM C")) %>%
droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for A and B at WEEK 2 DAY 1 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM B/ARM C") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% summarize_ancova(vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "STRATA1")),
conf_level = 0.95, var_labels = "Adjusted mean", show_labels = "hidden",
.labels = NULL)
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for MYFAVORITE at for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::append_topleft(paste0(" ", "MYFAVORITE")) %>% summarize_ancova(vars = "CHG",
variables = list(arm = "ARMCD", covariates = NULL), conf_level = 0.95,
var_labels = "Unadjusted comparison", .labels = c(lsmean = "Mean",
lsmean_diff = "Difference in Means"), table_names = "unadjusted_comparison") %>%
summarize_ancova(vars = "CHG", variables = list(arm = "ARMCD",
covariates = c("BASE", "STRATA1")), conf_level = 0.95,
var_labels = paste0("Adjusted comparison (", paste(c("BASE",
"STRATA1"), collapse = " + "), ")"), table_names = "adjusted_comparison")
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for Function/Well-Being (GF1,GF3,GF7) and BFI All Questions at WEEK 1 DAY 8 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% rtables::append_topleft(paste0(" Interaction Variable: ",
"SEX")) %>% summarize_ancova(vars = "CHG", variables = list(arm = "ARMCD",
covariates = c("BASE", "STRATA1", "ARMCD*SEX")), conf_level = 0.95,
var_labels = paste("Interaction Level:", "M"), show_labels = if (FALSE) "hidden" else "visible",
interaction_y = "M", interaction_item = "SEX")
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Code
res
Output
$data
{
adqs <- adqs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% droplevels() %>% df_explicit_na(na_level = default_na_str())
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary of Analysis of Variance for Function/Well-Being (GF1,GF3,GF7) and BFI All Questions at WEEK 1 DAY 8 for Absolute Change from Baseline") %>%
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft",
split_label = teal.data::col_labels(adqs["AVISIT"], fill = TRUE)) %>%
rtables::split_rows_by("PARAMCD", split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adqs["PARAMCD"],
fill = TRUE)) %>% rtables::append_topleft(paste0(" Interaction Variable: ",
"BASE")) %>% summarize_ancova(vars = "CHG", variables = list(arm = "ARMCD",
covariates = c("BASE", "STRATA1", "ARMCD*BASE")), conf_level = 0.95,
var_labels = paste("Interaction Level:", FALSE), show_labels = if (TRUE) "hidden" else "visible",
interaction_y = FALSE, interaction_item = "BASE")
$table
{
table <- rtables::build_table(lyt = lyt, df = adqs, alt_counts_df = adsl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.