Nothing
Code
res
Output
$data
{
anl <- adrs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("Complete Response (CR)",
"Partial Response (PR)")) %>% dplyr::mutate(AVALC = factor(AVALC,
levels = c("Complete Response (CR)", "Partial Response (PR)")))
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "") %>% rtables::split_cols_by(var = "ARMCD",
ref_group = "ARM A") %>% estimate_proportion(vars = "is_rsp",
conf_level = 0.95, method = "waldcc", table_names = "prop_est") %>%
estimate_proportion_diff(vars = "is_rsp", show_labels = "visible",
var_labels = "Unstratified Analysis", conf_level = 0.95,
method = "waldcc", table_names = "u_prop_diff") %>% test_proportion_diff(vars = "is_rsp",
method = "schouten", table_names = "u_test_diff") %>% estimate_odds_ratio(vars = "is_rsp",
conf_level = 0.95, table_names = "u_est_or") %>% estimate_multinomial_response(var = "AVALC",
conf_level = 0.95, method = "waldcc")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- ADRS %>% dplyr::filter(ARM %in% c("B: Placebo", "A: Drug X",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "B: Placebo")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("PR", "SD")) %>%
dplyr::mutate(AVALC = factor(AVALC, levels = c("PR",
"SD")))
ADSL <- ADSL %>% dplyr::filter(ARM %in% c("B: Placebo", "A: Drug X",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "B: Placebo")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for PR and SD Responders",
subtitles = "") %>% rtables::split_cols_by(var = "ARM", ref_group = "B: Placebo") %>%
estimate_proportion(vars = "is_rsp", conf_level = 0.95, method = "waldcc",
table_names = "prop_est") %>% estimate_proportion_diff(vars = "is_rsp",
show_labels = "visible", var_labels = "Unstratified Analysis",
conf_level = 0.95, method = "waldcc", table_names = "u_prop_diff") %>%
test_proportion_diff(vars = "is_rsp", method = "schouten",
table_names = "u_test_diff") %>% estimate_odds_ratio(vars = "is_rsp",
conf_level = 0.95, table_names = "u_est_or")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ADSL)
}
Code
res
Output
$data
{
anl <- ADRS %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("Complete Response (CR)",
"Partial Response (PR)")) %>% dplyr::mutate(AVALC = factor(AVALC,
levels = c("Complete Response (CR)", "Partial Response (PR)")))
ADSL <- ADSL %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "") %>% rtables::split_cols_by(var = "ARM") %>%
estimate_proportion(vars = "is_rsp", conf_level = 0.95, method = "waldcc",
table_names = "prop_est")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ADSL)
}
Code
res
Output
$data
{
anl <- ADRS %>% dplyr::filter(ARM %in% c("B: Placebo", "A: Drug X",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "B: Placebo")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("Complete Response (CR)",
"Partial Response (PR)")) %>% dplyr::mutate(AVALC = factor(AVALC,
levels = c("Complete Response (CR)", "Partial Response (PR)")))
ADSL <- ADSL %>% dplyr::filter(ARM %in% c("B: Placebo", "A: Drug X",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "B: Placebo")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "Stratified by SEX") %>% rtables::split_cols_by(var = "ARM",
ref_group = "B: Placebo") %>% estimate_proportion(vars = "is_rsp",
conf_level = 0.8, method = "jeffreys", table_names = "prop_est") %>%
estimate_proportion_diff(vars = "is_rsp", show_labels = "visible",
var_labels = "Unstratified Analysis", conf_level = 0.8,
method = "ha", table_names = "u_prop_diff") %>% test_proportion_diff(vars = "is_rsp",
method = "chisq", table_names = "u_test_diff") %>% estimate_odds_ratio(vars = "is_rsp",
conf_level = 0.8, table_names = "u_est_or") %>% estimate_proportion_diff(vars = "is_rsp",
show_labels = "visible", var_labels = "Stratified Analysis",
variables = list(strata = "SEX"), conf_level = 0.8, method = "cmh",
table_names = "s_prop_diff") %>% test_proportion_diff(vars = "is_rsp",
method = "cmh", variables = list(strata = "SEX"), table_names = "s_test_diff") %>%
estimate_odds_ratio(vars = "is_rsp", variables = list(arm = "ARM",
strata = "SEX"), conf_level = 0.8, table_names = "s_est_or") %>%
estimate_multinomial_response(var = "AVALC", conf_level = 0.8,
method = "jeffreys")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ADSL)
}
Code
res
Output
$data
{
anl <- adrs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("Complete Response (CR)",
"Partial Response (PR)")) %>% dplyr::mutate(AVALC = factor(AVALC,
levels = c("Complete Response (CR)", "Partial Response (PR)")))
ADSL <- ADSL %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = stats::relevel(ARMCD,
ref = "ARM A")) %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
df_explicit_na(na_level = "<Missing>")
}
$combine_comp_arms
groups <- combine_groups(fct = ADSL[["ARMCD"]], ref = "ARM A")
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "") %>% split_cols_by_groups(var = "ARMCD", groups_list = groups,
ref_group = names(groups)[1]) %>% estimate_proportion(vars = "is_rsp",
conf_level = 0.95, method = "waldcc", table_names = "prop_est") %>%
estimate_proportion_diff(vars = "is_rsp", show_labels = "visible",
var_labels = "Unstratified Analysis", conf_level = 0.95,
method = "waldcc", table_names = "u_prop_diff") %>% test_proportion_diff(vars = "is_rsp",
method = "schouten", table_names = "u_test_diff") %>% estimate_odds_ratio(vars = "is_rsp",
conf_level = 0.95, table_names = "u_est_or") %>% estimate_multinomial_response(var = "AVALC",
conf_level = 0.95, method = "waldcc")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ADSL)
}
Code
res
Output
$data
{
anl <- adrs %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
dplyr::mutate(is_rsp = AVALC %in% c("Complete Response (CR)",
"Partial Response (PR)")) %>% dplyr::mutate(AVALC = factor(AVALC,
levels = c("Complete Response (CR)", "Partial Response (PR)")))
ADSL <- ADSL %>% dplyr::mutate(ARMCD = droplevels(ARMCD)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "") %>% rtables::split_cols_by(var = "ARMCD") %>%
estimate_proportion(vars = "is_rsp", conf_level = 0.95, method = "waldcc",
table_names = "prop_est") %>% estimate_multinomial_response(var = "AVALC",
conf_level = 0.95, method = "waldcc")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ADSL)
}
Code
res
Output
[[1]]
split_cols_by_groups(var = "ARMCD", groups_list = groups, ref_group = names(groups)[1])
[[2]]
rtables::split_cols_by(var = "ARMCD", ref_group = "ARM C")
[[3]]
rtables::split_cols_by(var = "ARMCD")
[[4]]
rtables::split_cols_by(var = "ARMCD")
Code
res
Output
$data
{
anl <- adrs %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM A", "ARM B"), new_level = "ARM A/ARM B")) %>%
dplyr::mutate(ARMCD = stats::relevel(ARMCD, ref = "ARM A/ARM B")) %>%
dplyr::mutate(ARMCD = droplevels(ARMCD)) %>% dplyr::mutate(is_rsp = AVALC %in%
c("Complete Response (CR)", "Partial Response (PR)")) %>%
dplyr::mutate(AVALC = factor(AVALC, levels = c("Complete Response (CR)",
"Partial Response (PR)")))
adsl <- adsl %>% dplyr::filter(ARMCD %in% c("ARM A", "ARM B",
"ARM C")) %>% dplyr::mutate(ARMCD = combine_levels(ARMCD,
levels = c("ARM A", "ARM B"), new_level = "ARM A/ARM B")) %>%
dplyr::mutate(ARMCD = stats::relevel(ARMCD, ref = "ARM A/ARM B")) %>%
dplyr::mutate(ARMCD = droplevels(ARMCD)) %>% df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Table of BESRSPI for Complete Response (CR) and Partial Response (PR) Responders",
subtitles = "") %>% rtables::split_cols_by(var = "ARMCD",
ref_group = "ARM A/ARM B") %>% estimate_proportion(vars = "is_rsp",
conf_level = 0.95, method = "waldcc", table_names = "prop_est") %>%
estimate_proportion_diff(vars = "is_rsp", show_labels = "visible",
var_labels = "Unstratified Analysis", conf_level = 0.95,
method = "waldcc", table_names = "u_prop_diff") %>% test_proportion_diff(vars = "is_rsp",
method = "schouten", table_names = "u_test_diff") %>% estimate_odds_ratio(vars = "is_rsp",
conf_level = 0.95, table_names = "u_est_or") %>% estimate_multinomial_response(var = "AVALC",
conf_level = 0.95, method = "waldcc")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.