Nothing
Code
res
Output
$data
{
anl <- adae
anl <- anl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(anl[["ACTARM"]])
adsl <- adsl %>% dplyr::filter(ACTARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("AEBODSYS", "AEDECOD")))
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Body System and Adverse Event Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% rtables::add_overall_col(label = "All Patients") %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
rtables::split_rows_by("AEBODSYS", child_labels = "visible",
nested = FALSE, indent_mod = -1L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adae["AEBODSYS"])) %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
count_occurrences(vars = "AEDECOD", .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(adae, "AEDECOD", indent = 1L)
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
}
$sort
{
idx_split_col <- which(sapply(col_paths(table), tail, 1) ==
"All Patients")
pruned_and_sorted_result <- pruned_result %>% sort_at_path(path = c("AEBODSYS"),
scorefun = cont_n_onecol(idx_split_col)) %>% sort_at_path(path = c("AEBODSYS",
"*", "AEDECOD"), scorefun = score_occurrences_cols(col_indices = seq(1,
ncol(table))))
pruned_and_sorted_result
}
Code
res
Output
$data
{
anl <- adae
anl <- anl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(anl[["ACTARM"]])
adsl <- adsl %>% dplyr::filter(ACTARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
anl <- anl %>% dplyr::mutate(ACTARMCD = droplevels(ACTARMCD))
arm_levels <- levels(anl[["ACTARMCD"]])
adsl <- adsl %>% dplyr::filter(ACTARMCD %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARMCD = droplevels(ACTARMCD))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("AEBODSYS", "AEDECOD")))
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Body System and Adverse Event Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% rtables::split_cols_by("ACTARMCD",
split_fun = drop_split_levels) %>% rtables::add_overall_col(label = "All Patients") %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
rtables::split_rows_by("AEBODSYS", child_labels = "visible",
nested = FALSE, indent_mod = -1L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adae["AEBODSYS"])) %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
count_occurrences(vars = "AEDECOD", .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(adae, "AEDECOD", indent = 1L)
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
}
$sort
{
idx_split_col <- which(sapply(col_paths(table), tail, 1) ==
"All Patients")
pruned_and_sorted_result <- pruned_result %>% sort_at_path(path = c("AEBODSYS"),
scorefun = cont_n_onecol(idx_split_col)) %>% sort_at_path(path = c("AEBODSYS",
"*", "AEDECOD"), scorefun = score_occurrences_cols(col_indices = seq(1,
ncol(table))))
pruned_and_sorted_result
}
Code
res
Output
$data
{
anl <- adcm
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(adsl[["ACTARM"]])
anl <- anl %>% dplyr::mutate(ACTARM = factor(ACTARM, levels = arm_levels))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
"CMDECOD"))
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Con Med Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% summarize_num_patients(var = "USUBJID",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Overall total number of treatments"), na_str = "<Missing>") %>%
count_occurrences(vars = "CMDECOD", .indent_mods = -1L) %>%
append_varlabels(adcm, "CMDECOD")
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
}
$sort
{
idx_split_col <- which(sapply(col_paths(table), tail, 1) ==
"All Patients")
pruned_and_sorted_result <- pruned_result %>% sort_at_path(path = c("CMDECOD"),
scorefun = score_occurrences)
pruned_and_sorted_result
}
Code
res
Output
$data
{
anl <- adae
anl <- anl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(anl[["ACTARM"]])
adsl <- adsl %>% dplyr::filter(ACTARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl[["AEBODSYS"]] <- as.character(anl[["AEBODSYS"]])
anl[["AEDECOD"]] <- as.character(anl[["AEDECOD"]])
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("AEBODSYS", "AEDECOD")))
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Body System and Adverse Event Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% rtables::add_overall_col(label = "All Patients") %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
rtables::split_rows_by("AEBODSYS", child_labels = "visible",
nested = FALSE, indent_mod = -1L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adae["AEBODSYS"])) %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
count_occurrences(vars = "AEDECOD", .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(adae, "AEDECOD", indent = 1L)
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
}
$sort
{
pruned_and_sorted_result <- pruned_result
pruned_and_sorted_result
}
Code
res
Output
$data
{
anl <- adae
anl <- anl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(anl[["ACTARM"]])
adsl <- adsl %>% dplyr::filter(ACTARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("AEBODSYS", "AEDECOD")))
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Body System and Adverse Event Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% rtables::add_overall_col(label = "All Patients") %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
rtables::split_rows_by("AEBODSYS", child_labels = "visible",
nested = FALSE, indent_mod = -1L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adae["AEBODSYS"])) %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
count_occurrences(vars = "AEDECOD", .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(adae, "AEDECOD", indent = 1L)
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
col_indices <- 1:(ncol(table) - TRUE)
row_condition <- has_fraction_in_any_col(atleast = 0.4, col_indices = col_indices) &
has_fractions_difference(atleast = 0.1, col_indices = col_indices)
pruned_result <- pruned_result %>% rtables::prune_table(keep_rows(row_condition))
}
$sort
{
idx_split_col <- which(sapply(col_paths(table), tail, 1) ==
"All Patients")
pruned_and_sorted_result <- pruned_result %>% sort_at_path(path = c("AEBODSYS"),
scorefun = cont_n_onecol(idx_split_col)) %>% sort_at_path(path = c("AEBODSYS",
"*", "AEDECOD"), scorefun = score_occurrences_cols(col_indices = seq(1,
ncol(table))))
criteria_fun <- function(tr) {
inherits(tr, "ContentRow")
}
pruned_and_sorted_result <- rtables::trim_rows(pruned_and_sorted_result,
criteria = criteria_fun)
pruned_and_sorted_result
}
Code
res
Output
$data
{
anl <- adae
anl <- anl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
arm_levels <- levels(anl[["ACTARM"]])
adsl <- adsl %>% dplyr::filter(ACTARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARM = droplevels(ACTARM))
anl <- anl %>% dplyr::mutate(ACTARMCD = droplevels(ACTARMCD))
arm_levels <- levels(anl[["ACTARMCD"]])
adsl <- adsl %>% dplyr::filter(ACTARMCD %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ACTARMCD = droplevels(ACTARMCD))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("AEBODSYS", "AEDECOD")))
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Event Summary by Term : Body System and Adverse Event Code") %>%
rtables::split_cols_by(var = "ACTARM") %>% rtables::split_cols_by("ACTARMCD",
split_fun = drop_split_levels) %>% rtables::add_overall_col(label = "All Patients") %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
rtables::split_rows_by("AEBODSYS", child_labels = "visible",
nested = FALSE, indent_mod = -1L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adae["AEBODSYS"])) %>%
summarize_num_patients(var = "USUBJID", .stats = c("unique",
"nonunique"), .labels = c(unique = "Total number of patients with at least one event",
nonunique = "Overall total number of events"), na_str = "<Missing>") %>%
count_occurrences(vars = "AEDECOD", .indent_mods = c(count_fraction = 1L)) %>%
append_varlabels(adae, "AEDECOD", indent = 1L)
$table
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$prune
{
pruned_result <- rtables::prune_table(table)
col_indices <- 1:(ncol(table) - TRUE)
row_condition <- has_fraction_in_any_col(atleast = 0.4, col_indices = col_indices) &
has_fractions_difference(atleast = 0.1, col_indices = col_indices)
pruned_result <- pruned_result %>% rtables::prune_table(keep_rows(row_condition))
}
$sort
{
idx_split_col <- which(sapply(col_paths(table), tail, 1) ==
"All Patients")
pruned_and_sorted_result <- pruned_result %>% sort_at_path(path = c("AEBODSYS"),
scorefun = cont_n_onecol(idx_split_col)) %>% sort_at_path(path = c("AEBODSYS",
"*", "AEDECOD"), scorefun = score_occurrences_cols(col_indices = seq(1,
ncol(table))))
criteria_fun <- function(tr) {
inherits(tr, "ContentRow")
}
pruned_and_sorted_result <- rtables::trim_rows(pruned_and_sorted_result,
criteria = criteria_fun)
pruned_and_sorted_result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.