Nothing
Code
res
Output
$data
{
anl <- adcm
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("ATC1", "CMDECOD")))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
rtables::add_overall_col(label = "All Patients") %>% summarize_num_patients(var = "USUBJID",
count_by = "ASEQ", .stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% rtables::split_rows_by("ATC1",
child_labels = "visible", nested = FALSE, indent_mod = -1L,
split_fun = split_fun, label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC1"])) %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 1L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = c("ATC1",
"*", "CMDECOD"), scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Code
res
Output
$data
{
anl <- adcm
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(adsl[["ARM"]])
anl <- anl %>% dplyr::mutate(ARM = factor(ARM, levels = arm_levels))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("ATC1", "ATC2", "CMDECOD")))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
rtables::add_overall_col(label = "All Patients") %>% summarize_num_patients(var = "USUBJID",
count_by = "ASEQ", .stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% rtables::split_rows_by("ATC1",
child_labels = "visible", nested = FALSE, indent_mod = -1L,
split_fun = split_fun, label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC1"])) %>%
rtables::split_rows_by("ATC2", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC2"])) %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 2L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = c("ATC1",
"*", "ATC2", "*", "CMDECOD"), scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Code
res
Output
$data
{
anl <- adcm
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("ATC1", "ATC2", "ATC3", "CMDECOD")))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
rtables::add_overall_col(label = "All Patients") %>% summarize_num_patients(var = "USUBJID",
count_by = "ASEQ", .stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% rtables::split_rows_by("ATC1",
child_labels = "visible", nested = FALSE, indent_mod = -1L,
split_fun = split_fun, label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC1"])) %>%
rtables::split_rows_by("ATC2", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC2"])) %>%
rtables::split_rows_by("ATC3", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC3"])) %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 3L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = c("ATC1",
"*", "ATC2", "*", "ATC3", "*", "CMDECOD"), scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Code
res
Output
$data
{
anl <- adcm
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("ATC1", "ATC2", "ATC3", "ATC4", "CMDECOD")))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
rtables::add_overall_col(label = "All Patients") %>% summarize_num_patients(var = "USUBJID",
count_by = "ASEQ", .stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% rtables::split_rows_by("ATC1",
child_labels = "visible", nested = FALSE, indent_mod = -1L,
split_fun = split_fun, label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC1"])) %>%
rtables::split_rows_by("ATC2", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC2"])) %>%
rtables::split_rows_by("ATC3", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC3"])) %>%
rtables::split_rows_by("ATC4", child_labels = "visible",
nested = TRUE, indent_mod = 0L, split_fun = split_fun,
label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC4"])) %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 4L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = c("ATC1",
"*", "ATC2", "*", "ATC3", "*", "ATC4", "*", "CMDECOD"),
scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Code
res
Output
$data
{
anl <- adcm
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
"CMDECOD"))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
rtables::add_overall_col(label = "All Patients") %>% summarize_num_patients(var = "USUBJID",
count_by = "ASEQ", .stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 0L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = "CMDECOD",
scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Code
res
Output
$data
{
anl <- adcm
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% df_explicit_na(omit_columns = setdiff(names(anl),
c("ATC1", "CMDECOD")))
anl <- anl %>% dplyr::mutate(ASEQ = as.factor(ASEQ))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by(var = "ARM") %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% rtables::split_rows_by("ATC1",
child_labels = "visible", nested = FALSE, indent_mod = -1L,
split_fun = split_fun, label_pos = "topleft", split_label = teal.data::col_labels(adcm["ATC1"])) %>%
summarize_num_patients(var = "USUBJID", count_by = "ASEQ",
.stats = c("unique", "nonunique"), .labels = c(unique = "Total number of patients with at least one treatment",
nonunique = "Total number of treatments")) %>% count_occurrences(vars = "CMDECOD",
.indent_mods = -1L) %>% append_varlabels(adcm, "CMDECOD",
indent = 1L)
$table
result <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
$table_sorted
{
sorted_result <- result %>% sort_at_path(path = c("ATC1",
"*", "CMDECOD"), scorefun = score_occurrences)
}
$final_table
{
table <- sorted_result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.