Nothing
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c(c("RACE", "COUNTRY", "AGE"))), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
analyze_vars(vars = c("RACE", "COUNTRY", "AGE"), show_labels = "visible",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col",
.stats = c("n", "mean_sd", "mean_ci", "median", "median_ci",
"quantiles", "range", "geom_mean", "count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c("RACE")), na_level = "<Missing>")
adsl <- adsl %>% dplyr::mutate(ARMCD = droplevels(ARMCD))
arm_levels <- levels(adsl[["ARMCD"]])
anl <- anl %>% dplyr::mutate(ARMCD = factor(ARMCD, levels = arm_levels))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARMCD") %>% rtables::add_overall_col("All Patients") %>%
analyze_vars(vars = "RACE", var_labels = c(RACE = "Race"),
show_labels = "visible", na.rm = TRUE, na_str = "<Missing>",
denom = "N_col", .stats = c("n", "mean_sd", "mean_ci",
"median", "median_ci", "quantiles", "range", "geom_mean",
"count"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c(c("RACE", "COUNTRY", "AGE"))), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
arm_levels <- levels(anl[["STRATA1"]])
adsl <- adsl %>% dplyr::filter(STRATA1 %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::split_cols_by("STRATA1", split_fun = drop_split_levels) %>%
analyze_vars(vars = c("RACE", "COUNTRY", "AGE"), show_labels = "visible",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col",
.stats = c("n", "mean_sd", "mean_ci", "median", "median_ci",
"quantiles", "range", "geom_mean", "count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c(c("RACE", "COUNTRY", "AGE"))), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
arm_levels <- levels(anl[["STRATA1"]])
adsl <- adsl %>% dplyr::filter(STRATA1 %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::split_cols_by("STRATA1", split_fun = drop_split_levels) %>%
rtables::add_overall_col("All Patients") %>% analyze_vars(vars = c("RACE",
"COUNTRY", "AGE"), show_labels = "visible", na.rm = FALSE,
na_str = "<Missing>", denom = "N_col", .stats = c("n", "mean_sd",
"mean_ci", "median", "median_ci", "quantiles", "range",
"geom_mean", "count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c(c("RACE", "COUNTRY", "AGE"))), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
arm_levels <- levels(anl[["STRATA1"]])
adsl <- adsl %>% dplyr::filter(STRATA1 %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(STRATA1 = droplevels(STRATA1))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::split_cols_by("STRATA1", split_fun = drop_split_levels) %>%
analyze_vars(vars = c("RACE", "COUNTRY", "AGE"), show_labels = "visible",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col",
.stats = c("n", "count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adrs %>% df_explicit_na(omit_columns = setdiff(names(adrs),
c(c("RACE", "COUNTRY", "AGE"))), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
anl <- anl %>% dplyr::mutate(SEX = droplevels(SEX))
arm_levels <- levels(anl[["SEX"]])
adsl <- adsl %>% dplyr::filter(SEX %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(SEX = droplevels(SEX))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, main_footer = "n represents the number of unique subject IDs such that the variable has non-NA values.") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::split_cols_by("SEX", split_fun = drop_split_levels) %>%
rtables::add_overall_col("All Patients") %>% analyze_vars(vars = c("RACE",
"COUNTRY", "AGE"), show_labels = "visible", na.rm = FALSE,
na_str = "<Missing>", denom = "N_col", .stats = c("n", "mean_sd",
"mean_ci", "median", "median_ci", "quantiles", "range",
"geom_mean", "count_fraction")) %>% append_topleft(c("Arm",
"Sex", ""))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.