Nothing
Code
res
Output
$data
{
anl <- adlb %>% df_explicit_na(omit_columns = setdiff(names(adlb),
c("AVISIT", "AVAL")), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary Table for AVAL by AVISIT") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::add_overall_col("All Patients") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
split_fun = split_fun, label_pos = "topleft") %>% analyze_vars(vars = "AVAL",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col", .stats = c("n",
"mean_sd", "mean_ci", "median", "median_ci", "quantiles",
"range", "count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
parallel_vars
is trueCode
res
Output
$data
{
anl <- adlb %>% df_explicit_na(omit_columns = setdiff(names(adlb),
c("AVISIT", c("AVAL", "CHG"))), na_level = "<Missing>")
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(adsl[["ARM"]])
anl <- anl %>% dplyr::mutate(ARM = factor(ARM, levels = arm_levels))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary Table for AVAL, CHG by AVISIT") %>%
rtables::split_cols_by("ARM") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
split_fun = split_fun, label_pos = "topleft") %>% split_cols_by_multivar(vars = c("AVAL",
"CHG")) %>% summarize_colvars(vars = c("AVAL", "CHG"), na.rm = FALSE,
denom = "N_col", .stats = c("n", "mean_sd", "mean_ci", "median",
"median_ci", "quantiles", "range", "count_fraction"),
na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
row_groups
is trueCode
res
Output
$data
{
anl <- adsl %>% df_explicit_na(omit_columns = setdiff(names(adsl),
c(c("SEX", "COUNTRY"), "AVAL")), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout_cfun
cfun_unique <- function(x, labelstr = "", .N_col) {
y <- length(unique(x))
rcell(c(y, y/.N_col), label = labelstr)
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary Table for AVAL by SEX, COUNTRY") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::split_rows_by("SEX", split_label = teal.data::col_labels(adsl,
fill = FALSE)[["SEX"]], split_fun = split_fun, label_pos = "topleft") %>%
rtables::summarize_row_groups(var = "USUBJID", cfun = cfun_unique,
na_str = "<Missing>") %>% rtables::split_rows_by("COUNTRY",
split_label = teal.data::col_labels(adsl, fill = FALSE)[["COUNTRY"]],
split_fun = split_fun, label_pos = "topleft") %>% rtables::summarize_row_groups(var = "USUBJID",
cfun = cfun_unique, na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
Code
res
Output
$data
{
anl <- adlb %>% df_explicit_na(omit_columns = setdiff(names(adlb),
c("AVISIT", "AVAL")), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary Table for AVAL by AVISIT") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::add_overall_col("All Patients") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
split_fun = split_fun, label_pos = "topleft") %>% analyze_vars(vars = "AVAL",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col", .stats = c("n",
"count_fraction"))
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl)
}
drop_zero_levels
is trueCode
res
Output
$data
{
anl <- adlb %>% df_explicit_na(omit_columns = setdiff(names(adlb),
c("AVISIT", "AVAL")), na_level = "<Missing>")
anl <- anl %>% dplyr::mutate(ARM = droplevels(ARM))
arm_levels <- levels(anl[["ARM"]])
adsl <- adsl %>% dplyr::filter(ARM %in% arm_levels)
adsl <- adsl %>% dplyr::mutate(ARM = droplevels(ARM))
adsl <- df_explicit_na(adsl, na_level = "<Missing>")
}
$layout_prep
split_fun <- drop_split_levels
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Summary Table for AVAL by AVISIT") %>%
rtables::split_cols_by("ARM", split_fun = drop_split_levels) %>%
rtables::add_overall_col("All Patients") %>% rtables::split_rows_by("AVISIT",
split_label = teal.data::col_labels(adlb, fill = FALSE)[["AVISIT"]],
split_fun = split_fun, label_pos = "topleft") %>% analyze_vars(vars = "AVAL",
na.rm = FALSE, na_str = "<Missing>", denom = "N_col", .stats = c("n",
"mean_sd", "mean_ci", "median", "median_ci", "quantiles",
"range", "count_fraction"))
$table
{
all_zero <- function(tr) {
if (!inherits(tr, "TableRow") || inherits(tr, "LabelRow")) {
return(FALSE)
}
rvs <- unlist(unname(row_values(tr)))
isTRUE(all(rvs == 0))
}
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = adsl) %>%
rtables::trim_rows(criteria = all_zero)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.