Nothing
Code
res
Output
$data
{
anl <- ANL %>% dplyr::mutate(ARM = droplevels(ARM)) %>% dplyr::mutate(is_event = CNSR ==
0, is_not_event = CNSR == 1, EVNT1 = factor(dplyr::case_when(is_event ==
TRUE ~ "Patients with event (%)", is_event == FALSE ~
"Patients without event (%)"), levels = c("Patients with event (%)",
"Patients without event (%)")), EVNTDESC = factor(EVNTDESC)) %>%
df_explicit_na(na_level = "<Missing>")
ANL_ADSL <- ANL_ADSL %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Time-To-Event Table for OS",
main_footer = "Confidence Level Type for Survfit: plain") %>%
rtables::split_cols_by(var = "ARM") %>% analyze_vars("is_event",
.stats = "count_fraction", .labels = c(count_fraction = "Patients with event (%)"),
na_str = "<Missing>") %>% rtables::split_rows_by("EVNT1",
split_label = "Earliest contributing event", split_fun = keep_split_levels("Patients with event (%)"),
label_pos = "visible", child_labels = "hidden", indent_mod = 1L,
) %>% rtables::split_rows_by("EVNTDESC", split_fun = drop_split_levels) %>%
rtables::summarize_row_groups(format = "xx", na_str = "<Missing>") %>%
analyze_vars("is_not_event", .stats = "count_fraction", .labels = c(count_fraction = "Patients without event (%)"),
nested = FALSE, show_labels = "hidden", na_str = "<Missing>") %>%
surv_time(vars = "AVAL", var_labels = paste0("Time to Event (",
as.character(anl$AVALU[1]), ")"), is_event = "is_event",
control = list(conf_level = 0.95, conf_type = "plain",
quantiles = c(0.25, 0.75)), na_str = "<Missing>",
table_names = "time_to_event") %>% surv_timepoint(vars = "AVAL",
var_labels = as.character(anl$AVALU[1]), is_event = "is_event",
time_point = c(183, 365, 548), method = "surv", control = control_surv_timepoint(conf_level = 0.95,
conf_type = "plain"), .indent_mods = NULL, na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ANL_ADSL)
}
Code
res
Output
$data
{
anl <- ANL %>% dplyr::mutate(ARM = droplevels(ARM)) %>% dplyr::mutate(is_event = CNSR ==
0, is_not_event = CNSR == 1, EVNT1 = factor(dplyr::case_when(is_event ==
TRUE ~ "Patients with event (%)", is_event == FALSE ~
"Patients without event (%)"), levels = c("Patients with event (%)",
"Patients without event (%)")), EVNTDESC = factor(EVNTDESC)) %>%
df_explicit_na(na_level = "<Missing>")
ANL_ADSL <- ANL_ADSL %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Time-To-Event Table for OS",
main_footer = "Confidence Level Type for Survfit: plain") %>%
rtables::split_cols_by(var = "ARM") %>% analyze_vars("is_event",
.stats = "count_fraction", .labels = c(count_fraction = "Patients with event (%)"),
na_str = "<Missing>") %>% rtables::split_rows_by("EVNT1",
split_label = "Earliest contributing event", split_fun = keep_split_levels("Patients with event (%)"),
label_pos = "visible", child_labels = "hidden", indent_mod = 1L,
) %>% rtables::split_rows_by("EVNTDESC", split_fun = drop_split_levels) %>%
rtables::summarize_row_groups(format = "xx", na_str = "<Missing>") %>%
analyze_vars("is_not_event", .stats = "count_fraction", .labels = c(count_fraction = "Patients without event (%)"),
nested = FALSE, show_labels = "hidden", na_str = "<Missing>") %>%
surv_time(vars = "AVAL", var_labels = paste0("Time to Event (",
as.character(anl$AVALU[1]), ")"), is_event = "is_event",
control = list(conf_level = 0.95, conf_type = "plain",
quantiles = c(0.25, 0.75)), na_str = "<Missing>",
table_names = "time_to_event") %>% surv_timepoint(vars = "AVAL",
var_labels = as.character(anl$AVALU[1]), is_event = "is_event",
time_point = c(183, 365, 548), method = "surv", control = control_surv_timepoint(conf_level = 0.95,
conf_type = "plain"), .indent_mods = NULL, na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ANL_ADSL)
}
Code
res
Output
$data
{
anl <- ANL %>% dplyr::filter(ARM %in% c("A: Drug X", "B: Placebo",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
dplyr::mutate(is_event = CNSR == 0, is_not_event = CNSR ==
1, EVNT1 = factor(dplyr::case_when(is_event == TRUE ~
"Patients with event (%)", is_event == FALSE ~ "Patients without event (%)"),
levels = c("Patients with event (%)", "Patients without event (%)")),
EVNTDESC = factor(EVNTDESC)) %>% df_explicit_na(na_level = "<Missing>")
ANL_ADSL <- ANL_ADSL %>% dplyr::filter(ARM %in% c("A: Drug X",
"B: Placebo", "C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$combine_comp_arms
groups <- combine_groups(fct = ANL_ADSL[["ARM"]], ref = "")
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Time-To-Event Table for OS",
main_footer = c("p-value method for Coxph (Hazard Ratio): log-rank",
"Ties for Coxph (Hazard Ratio): efron", "Confidence Level Type for Survfit: plain")) %>%
split_cols_by_groups(var = "ARM", groups_list = groups, ref_group = names(groups)[1]) %>%
analyze_vars("is_event", .stats = "count_fraction", .labels = c(count_fraction = "Patients with event (%)"),
na_str = "<Missing>") %>% rtables::split_rows_by("EVNT1",
split_label = "Earliest contributing event", split_fun = keep_split_levels("Patients with event (%)"),
label_pos = "visible", child_labels = "hidden", indent_mod = 1L,
) %>% rtables::split_rows_by("EVNTDESC", split_fun = drop_split_levels) %>%
rtables::summarize_row_groups(format = "xx", na_str = "<Missing>") %>%
analyze_vars("is_not_event", .stats = "count_fraction", .labels = c(count_fraction = "Patients without event (%)"),
nested = FALSE, show_labels = "hidden", na_str = "<Missing>") %>%
surv_time(vars = "AVAL", var_labels = paste0("Time to Event (",
as.character(anl$AVALU[1]), ")"), is_event = "is_event",
control = list(conf_level = 0.95, conf_type = "plain",
quantiles = c(0.25, 0.75)), na_str = "<Missing>",
table_names = "time_to_event") %>% coxph_pairwise(vars = "AVAL",
is_event = "is_event", var_labels = c("Unstratified Analysis"),
control = list(pval_method = "log-rank", ties = "efron",
conf_level = 0.95), na_str = "<Missing>", table_names = "unstratified") %>%
surv_timepoint(vars = "AVAL", var_labels = as.character(anl$AVALU[1]),
is_event = "is_event", time_point = c(183, 365, 548),
method = "both", control = control_surv_timepoint(conf_level = 0.95,
conf_type = "plain"), .indent_mods = c(pt_at_risk = 0L,
event_free_rate = 0L, rate_ci = 0L, rate_diff = 1L,
rate_diff_ci = 1L, ztest_pval = 1L), na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ANL_ADSL)
}
Code
res
Output
$data
{
anl <- ANL %>% dplyr::filter(ARM %in% c("A: Drug X", "B: Placebo",
"C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
dplyr::mutate(is_event = CNSR == 0, is_not_event = CNSR ==
1, EVNT1 = factor(dplyr::case_when(is_event == TRUE ~
"Patients with event (%)", is_event == FALSE ~ "Patients without event (%)"),
levels = c("Patients with event (%)", "Patients without event (%)")),
EVNTDESC = factor(EVNTDESC)) %>% df_explicit_na(na_level = "<Missing>")
ANL_ADSL <- ANL_ADSL %>% dplyr::filter(ARM %in% c("A: Drug X",
"B: Placebo", "C: Combination")) %>% dplyr::mutate(ARM = stats::relevel(ARM,
ref = "")) %>% dplyr::mutate(ARM = droplevels(ARM)) %>%
df_explicit_na(na_level = "<Missing>")
}
$layout
lyt <- rtables::basic_table(show_colcounts = TRUE, title = "Time-To-Event Table for OS",
main_footer = c("p-value method for Coxph (Hazard Ratio): log-rank",
"Ties for Coxph (Hazard Ratio): efron", "Confidence Level Type for Survfit: plain")) %>%
rtables::split_cols_by(var = "ARM", ref_group = "") %>% analyze_vars("is_event",
.stats = "count_fraction", .labels = c(count_fraction = "Patients with event (%)"),
na_str = "<Missing>") %>% rtables::split_rows_by("EVNT1",
split_label = "Earliest contributing event", split_fun = keep_split_levels("Patients with event (%)"),
label_pos = "visible", child_labels = "hidden", indent_mod = 1L,
) %>% rtables::split_rows_by("EVNTDESC", split_fun = drop_split_levels) %>%
rtables::summarize_row_groups(format = "xx", na_str = "<Missing>") %>%
analyze_vars("is_not_event", .stats = "count_fraction", .labels = c(count_fraction = "Patients without event (%)"),
nested = FALSE, show_labels = "hidden", na_str = "<Missing>") %>%
surv_time(vars = "AVAL", var_labels = paste0("Time to Event (",
as.character(anl$AVALU[1]), ")"), is_event = "is_event",
control = list(conf_level = 0.95, conf_type = "plain",
quantiles = c(0.25, 0.75)), na_str = "<Missing>",
table_names = "time_to_event") %>% coxph_pairwise(vars = "AVAL",
is_event = "is_event", var_labels = c("Unstratified Analysis"),
control = list(pval_method = "log-rank", ties = "efron",
conf_level = 0.95), na_str = "<Missing>", table_names = "unstratified") %>%
surv_timepoint(vars = "AVAL", var_labels = as.character(anl$AVALU[1]),
is_event = "is_event", time_point = c(183, 365, 548),
method = "both", control = control_surv_timepoint(conf_level = 0.95,
conf_type = "plain"), .indent_mods = c(pt_at_risk = 0L,
event_free_rate = 0L, rate_ci = 0L, rate_diff = 1L,
rate_diff_ci = 1L, ztest_pval = 1L), na_str = "<Missing>")
$table
{
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = ANL_ADSL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.