| tm_a_mmrm | R Documentation |
This module produces analysis tables and plots for Mixed Model Repeated Measurements.
tm_a_mmrm(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
aval_var,
id_var,
arm_var,
visit_var,
cov_var,
arm_ref_comp = NULL,
paramcd,
method = teal.transform::choices_selected(c("Satterthwaite", "Kenward-Roger",
"Kenward-Roger-Linear"), "Satterthwaite", keep_order = TRUE),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
plot_height = c(700L, 200L, 2000L),
plot_width = NULL,
total_label = default_total_label(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()
)
a teal_module object.
This module generates the following objects, which can be modified in place using decorators:
lsmeans_plot (ggplot)
diagnostic_plot (ggplot)
lsmeans_table (TableTree- output from rtables::build_table)
covariance_table (ElementaryTable- output from rtables::build_table)
fixed_effects_table (ElementaryTable- output from rtables::build_table)
diagnostic_table (ElementaryTable- output from rtables::build_table)
A Decorator is applied to the specific output using a named list of teal_transform_module objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_a_mrmm(
..., # arguments for module
decorators = list(
lsmeans_plot = teal_transform_module(...), # applied only to `lsmeans_plot` output
diagnostic_plot = teal_transform_module(...), # applied only to `diagnostic_plot` output
lsmeans_table = teal_transform_module(...), # applied only to `lsmeans_table` output
covariance_table = teal_transform_module(...), # applied only to `covariance_table` output
fixed_effects_table = teal_transform_module(...), # applied only to `fixed_effects_table` output
diagnostic_table = teal_transform_module(...) # applied only to `diagnostic_table` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.clinical").
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal") or the teal::teal_transform_module() documentation.
The ordering of the input data sets can lead to slightly different numerical results or
different convergence behavior. This is a known observation with the used package
lme4. However, once convergence is achieved, the results are reliable up to
numerical precision.
The TLG Catalog where additional example apps implementing this module can be found.
library(dplyr)
arm_ref_comp <- list(
ARMCD = list(
ref = "ARM B",
comp = c("ARM A", "ARM C")
)
)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADQS <- tmc_ex_adqs %>%
filter(ABLFL != "Y" & ABLFL2 != "Y") %>%
filter(AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 3 DAY 22")) %>%
mutate(
AVISIT = as.factor(AVISIT),
AVISITN = rank(AVISITN) %>%
as.factor() %>%
as.numeric() %>%
as.factor() #' making consecutive numeric factor
)
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
app <- init(
data = data,
modules = modules(
tm_a_mmrm(
label = "MMRM",
dataname = "ADQS",
aval_var = choices_selected(c("AVAL", "CHG"), "AVAL"),
id_var = choices_selected(c("USUBJID", "SUBJID"), "USUBJID"),
arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
visit_var = choices_selected(c("AVISIT", "AVISITN"), "AVISIT"),
arm_ref_comp = arm_ref_comp,
paramcd = choices_selected(
choices = value_choices(data[["ADQS"]], "PARAMCD", "PARAM"),
selected = "FKSI-FWB"
),
cov_var = choices_selected(c("BASE", "AGE", "SEX", "BASE:AVISIT"), NULL)
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.