teal
version 0.16
introduced a new, optional argument in teal::module
, transformators
.
This argument accepts a list
of teal_transform_module
objects, which are created using the teal_transform_module()
function.
teal_transform_module()
takes ui
and server
arguments to create a shiny
module that encodes data transformations.
When transformators are passed to a module, teal
will execute data transformations when that module is loaded as well as whenever the original data changes.
The transformations are applied to the data before it reaches the module.
The ui
elements of the transform module will be added to the filter panel, while the server function provides the data manipulation logic.
This vignette describes how to manage custom data transformations in teal
apps.
In this vignette we will focus on using the teal_transform_module
for transforming the input data using the transformators
argument in teal::module
function.
Let us initialize a simple teal
app by providing iris
and mtcars
as input datasets.
library(teal)
interactive <- function() TRUE
library(teal) data <- within(teal_data(), { iris <- iris mtcars <- mtcars }) app <- init( data = data, modules = example_module() ) if (interactive()) { shinyApp(app$ui, app$server) }
code <- paste0(c( knitr::knit_code$get("as_interactive"), knitr::knit_code$get("app_1") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) knitr::include_url(url, height = "800px")
Now let us create a simple teal_transform_module
that returns the first n
number of rows of iris
based on user input.
We will achieve this by creating a UI function with a numericInput
for the user to specify the number of rows to be displayed.
The server function will take a reactive expression holding data
as argument and return a reactive expression holding transformed data
.
Note: It is recommended to return reactive()
with teal_data()
in server
code of a teal_transform_module
as this is more robust for maintaining the reactivity of Shiny.
If you are planning on using eventReactive()
in the server, the event should include data()
(example eventReactive(list(input$a, data()), {...})
).
More in this discussion.
library(teal)
data <- within(teal_data(), { iris <- iris mtcars <- mtcars }) transformator_iris <- teal_transform_module( label = "Custom transformator for iris", ui = function(id) { ns <- NS(id) tags$div( numericInput(ns("n_rows"), "Number of rows to display", value = 6, min = 1, max = 150, step = 1) ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within( data(), iris <- head(iris, num_rows), num_rows = input$n_rows ) }) }) } ) app <- init( data = data, modules = example_module(transformators = list(transformator_iris)) ) if (interactive()) { shinyApp(app$ui, app$server) }
Note: The server
function of a teal_transform_module
must return a reactive expression with a teal_data
object.
In order to maintain full reactivity, we recommended using reactive()
over eventReactive()
.
If you do use eventReactive()
or bindEvent()
, the trigger event should include data()
(e.g. eventReactive(list(input$a, data()), {...})
).
See this discussion for a detailed explanation.
code <- paste0(c( knitr::knit_code$get("as_interactive"), knitr::knit_code$get("setup"), knitr::knit_code$get("app_2") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) knitr::include_url(url, height = "800px")
module(transformators)
accepts a list, so we can use multiple teal_transform_module
s at the same time.
Let us add another transformation that creates a column with rownames
in mtcars
.
Note that this module does not have interactive UI elements.
data <- within(teal_data(), { iris <- iris mtcars <- mtcars }) transformator_iris <- teal_transform_module( label = "Custom transformator for iris", ui = function(id) { ns <- NS(id) tags$div( numericInput(ns("n_rows"), "Number of rows to subset", value = 6, min = 1, max = 150, step = 1) ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within( data(), iris <- head(iris, num_rows), num_rows = input$n_rows ) }) }) } ) transformator_mtcars <- teal_transform_module( label = "Custom transformator for mtcars", ui = function(id) { ns <- NS(id) tags$div( "Adding rownames column to mtcars" ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { mtcars$rownames <- rownames(mtcars) rownames(mtcars) <- NULL }) }) }) } ) my_transformators <- list( transformator_iris, transformator_mtcars ) app <- init( data = data, modules = example_module(transformators = my_transformators) ) if (interactive()) { shinyApp(app$ui, app$server) }
code <- paste0(c( knitr::knit_code$get("as_interactive"), knitr::knit_code$get("setup"), knitr::knit_code$get("app_3") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) knitr::include_url(url, height = "800px")
It is also possible to have multiple transformator modules act on one dataset. In such cases, transformations will be executed in the same order in which the transformator modules are passed to the module.
data <- within(teal_data(), { iris <- iris mtcars <- mtcars }) transformator_iris_scale <- teal_transform_module( label = "Scaling transformator for iris", ui = function(id) { ns <- NS(id) uiOutput(ns("scaled_columns_container")) }, server = function(id, data) { moduleServer(id, function(input, output, session) { ns <- session$ns scalable_columns <- names(Filter(is.numeric, data()[["iris"]])) |> isolate() output$scaled_columns_container <- renderUI({ selectInput( inputId = ns("scaled_columns"), label = "Columns to scale", choices = scalable_columns, selected = input$scaled_columns, multiple = TRUE ) }) reactive({ within( data(), { iris[scaled_columns] <- scale(iris[scaled_columns]) }, scaled_columns = input$scaled_columns ) }) }) } ) transformator_iris <- teal_transform_module( label = "Custom transformator for iris", ui = function(id) { ns <- NS(id) tags$div( numericInput(ns("n_rows"), "Number of rows to subset", value = 6, min = 1, max = 150, step = 1) ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within( data(), iris <- head(iris, num_rows), num_rows = input$n_rows ) }) }) } ) transformator_mtcars <- teal_transform_module( label = "Custom transformator for mtcars", ui = function(id) { ns <- NS(id) tags$div( "Adding rownames column to mtcars" ) }, server = function(id, data) { moduleServer(id, function(input, output, session) { reactive({ within(data(), { mtcars$rownames <- rownames(mtcars) rownames(mtcars) <- NULL }) }) }) } ) my_transformators <- list( transformator_iris, transformator_iris_scale, transformator_mtcars ) app <- init( data = data, modules = example_module(transformators = my_transformators) ) if (interactive()) { shinyApp(app$ui, app$server) }
This approach provides greater flexibility in data preprocessing, allowing transformations to be tailored to specific datasets for a specific module.
code <- paste0(c( knitr::knit_code$get("as_interactive"), knitr::knit_code$get("setup"), knitr::knit_code$get("app_4") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) knitr::include_url(url, height = "800px")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.